Forgot password?
 Register account
View 2346|Reply 1

[不等式] 三元三次齐次对称式的配方入门

[Copy link]

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

isee Posted 2020-10-22 20:09 |Read mode
Last edited by isee 2020-10-22 20:15在证明三元均值不等式时遇到类似于的kuing的“专有”神配方:

$$(a+b+c)^3-27abc=\frac 12\big((a+b+7c)(a-b)^2+(b+c+7a)(b-c)^2+(c+a+7b)(c-a)^2\big).$$

用待定数系法慢慢的算了下:这种结构的轮换$(k_1a+k_2b+k_3c)(a-b)^2$,发现$k_1=k_2$,搜索一下,网上有一般结论:差分配方法.

如果三次齐对称式$f(a,b,c)$满足$f(1,1,1)=0$,则将$f(a,b,c)$可以配方成$$(k_1(a+b)+k_2c)(a-b)^2+(k_1(b+c)+k_2a)(b-c)^2+(k_1(c+a)+k_2b)(c-a)^2,$$

其中$$2k_1=f(1,0,0),2k_1+2k_2=f(1,1,0),$$

我看到的资料如下:

wenku.baidu.com/view/52cb63cb336c1eb91b375d44.html
blog.sina.com.cn/s/blog_a9606fae0101lwbr.html


另一个初学入门:[入门]对二元二次多项式的配方

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2023-4-18 09:23
$type Sum of Squares - David Arthur - Canada 2009.pdf (147.95 KB, Downloads: 57)
$type Supersums of Square-Weights A Dumbass’s Perspective.pdf (279.32 KB, Downloads: 51)
$type 有点高深_SOS,SAC,SS,VS,pqr五种证明不等式的方法(英文).pdf (297.76 KB, Downloads: 50)
$type Squares Analysis Method S.O.S.PDF (56.51 KB, Downloads: 54)

Mobile version|Discuz Math Forum

2025-5-31 10:31 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit