|
3 Deriving Algebraic Identities
The usefulness of CDN in deriving algebraic identities comes from the ability to visualize what combination of expressions equals what. As an example, I will derive a well-known identity. Using this example, I will show the key steps in using CDN to derive new algebraic identities.
Suppose I want to find another way to express $(x+y+z)\left(x^{2}+y^{2}+z^{2}\right)$. The CDN of this expression is
$$
\left[\begin{array}{llllllll}
& & & 1 & & & \\
& & 1 & & 1 & & \\
& 1 & & 0 & & 1 & \\
1 & & 1 & & 1 & & 1
\end{array}\right]
$$
I look at the list of CDN for common expressions and see that the CDN for $(x+y+z)(x y+y z+z x)$,
$$
\left[\begin{array}{llllllll}
& & & 0 & & & \\
& & 1 & & 1 & & \\
& 1 & & 3 & & 1 & \\
0 & & 1 & & 1 & & 0
\end{array}\right]
$$
might be useful because the middle ring of ones can cancel some terms out:
$$
\left[\begin{array}{lllllll}
& & & 1 & & & \\
& & 1 & & 1 & & \\
& 1 & & 0 & & 1 & \\
1 & & 1 & & 1 & & 1
\end{array}\right]-\left[\begin{array}{lllllll}
& & & 0 & & & \\
& & 1 & & 1 & & \\
& 1 & & 3 & & 1 & \\
0 & & 1 & & 1 & & 0
\end{array}\right]
$$which corresponds to
$$
\begin{array}{c}
(x+y+z)\left(x^{2}+y^{2}+z^{2}\right)-(x+y+z)(x y+y z+z x) \\
=(x+y+z)\left(x^{2}+y^{2}+z^{2}-x y-y z-z x\right)
\end{array}
$$
But clearly,
\begin{align*}&\left[\begin{array}{lllllll}
& & & 1 & & & \\
& & 0 & & 0 & & \\
& 0 & & -3 & & 0 & \\
1 & & 0 & & 0 & & 1
\end{array}\right]\\
=&\left[\begin{array}{ccccccc}
& & & 1 & & & \\
& & 0 & & 0 & & \\
& 0 & & 0 & & 0 & \\
1 & & 0 & & 0 & & 1
\end{array}\right]-\left[\begin{array}{ccccc}
& & & 0 & & & \\
& & 0 & & 0 & & \\
& 0 & & 3 & & 0 & \\
0 & & 0 & & 0 & & 0
\end{array}\right] \\
=&x^{3}+y^{3}+z^{3}-3 x y z
\end{align*}Thus,
$$
(x+y+z)\left(x^{2}+y^{2}+z^{2}-x y-y z-z x\right)=x^{3}+y^{3}+z^{3}-3 x y z
$$
and we have derived a famous identity. $\Box$
In the previous example, we see some key steps in finding an identity:
- Start out with an expression and its CDN that we want to represent in another way. In the previous example, we started out with
$$
(x+y+z)\left(x^{2}+y^{2}+z^{2}\right)=\left[\begin{array}{lllllll}
& & & 1 & & & \\
& & 1 & & 1 & & \\
& 1 & & 0 & & 1 & \\
1 & & 1 & & 1 & & 1
\end{array}\right]
$$ - Using the list of CDN for common expressions, we add and subtract expressions from this starting expression in smart ways. In the previous example, we subtracted
$$
(x+y+z)(x y+y z+z x)=\left[\begin{array}{lllllll}
& & & 0 & & & \\
& & 1 & & 1 & & \\
& 1 & & 3 & & 1 & \\
0 & & 1 & & 1 & & 0
\end{array}\right]
$$
to get rid of six one's in the original expression. - The goal is to try to reduce the original expression using additions and subtractions into an expression with a CDN that we recognize. In the previous example, we reduced it to this, which we recognized as $x^{3}+y^{3}+$ $z^{3}-3 x y z$ :
$$
\left[\begin{array}{lllllll}
& & & 1 & & & \\
& & 0 & & 0 & & \\
& 0 & & -3 & & 0 & \\
1 & & 0 & & 0 & & 1
\end{array}\right]
$$ - Remember that the less reductions you make, the simpler the final identity will be. A short and simple identity is more beautiful and more useful than a long, contrived identity.
In the next few examples, we will put these key steps to work, deriving or perhaps rederiving identities.
3.1 Identity 1
Let's change the expression $(x+y)^{3}+(y+z)^{3}+(z+x)^{3}$ to CDN:
$$
\left[\begin{array}{llllllll}
& & & 2 & & & \\
& & 3 & & 3 & & \\
& 3 & & 0 & & 3 & \\
2 & & 3 & & 3 & & 2
\end{array}\right]
$$
In order to make every term equal to three, let's add $x^{3}+y^{3}+z^{3}$ to get
$$
x^{3}+y^{3}+z^{3}+(x+y)^{3}+(y+z)^{3}+(z+x)^{3}
$$
which corresponds to
$$
\left[\begin{array}{lllllll}
& & & 3 & & & \\
& & 3 & & 3 & & \\
& 3 & & 0 & & 3 & \\
3 & & 3 & & 3 & & 3
\end{array}\right]
$$
But we know that $(x+y+z)\left(x^{2}+y^{2}+z^{2}\right)$ can be expressed as
$$
\left[\begin{array}{llllllll}
& & & 1 & & & \\
& & 1 & & 1 & & \\
& 1 & & 0 & & 1 & \\
1 & & 1 & & 1 & & 1
\end{array}\right]
$$
so $3(x+y+z)\left(x^{2}+y^{2}+z^{2}\right)$ written in $\mathrm{CDN}$ is$$
\left[\begin{array}{lllllll}
& & & 3 & & & \\
& & 3 & & 3 & & \\
& 3 & & 0 & & 3 & \\
3 & & 3 & & 3 & & 3
\end{array}\right]
$$
Finally, this means that
$$
x^{3}+y^{3}+z^{3}+(x+y)^{3}+(y+z)^{3}+(z+x)^{3}=3(x+y+z)\left(x^{2}+y^{2}+z^{2}\right)
$$
and we have our identity.$\Box$
3.2 Identity 2
Let's start with the expression $(x+y+z)^{3}$ :
$$
\left[\begin{array}{lllllll}
& & & 1 & & & \\
& & 3 & & 3 & & \\
& 3 & & 6 & & 3 & \\
1 & & 3 & & 3 & & 1
\end{array}\right]
$$
We notice that the inside seven numbers resemble a multiple of the CDN for $(x+y)(y+z)(z+x)$. Specifically, $3(x+y)(y+z)(z+x)$ in CDN is
$$
3\left[\begin{array}{lllllll}
& & & 0 & & & \\
& & 1 & & 1 & & \\
& 1 & & 2 & & 1 & \\
0 & & 1 & & 1 & & 0
\end{array}\right]=\left[\begin{array}{llllll}
& & & 0 & & & \\
& & 3 & & 3 & & \\
& 3 & & 6 & & 3 & \\
0 & & 3 & & 3 & & 0
\end{array}\right]
$$
Subtracting this from our original expression gives $(x+y+z)^{3}-3(x+y)(y+$ $z)(z+x)$ in $\mathrm{CDN}$ is
$$
\left[\begin{array}{lllllll}
& & & 1 & & & \\
& & 3 & & 3 & & \\
& 3 & & 6 & & 3 & \\
1 & & 3 & & 3 & & 1
\end{array}\right]-\left[\begin{array}{llllll}
& & & 0 & & & \\
& & 3 & & 3 & & \\
& 3 & & 6 & & 3 & \\
0 & & 3 & & 3 & & 0
\end{array}\right]
$$
$$
=\left[\begin{array}{lllllll}
& & & 1 & & & \\
& & 0 & & 0 & & \\
& 0 & & 0 & & 0 & \\
1 & & 0 & & 0 & & 1
\end{array}\right]
$$
But this is just $x^{3}+y^{3}+z^{3}$. Thus,
$$
(x+y+z)^{3}-3(x+y)(y+z)(z+x)=x^{3}+y^{3}+z^{3}
$$
and after rearrangement we have an identity
$$
(x+y+z)^{3}-\left(x^{3}+y^{3}+z^{3}\right)=3(x+y)(y+z)(z+x)
$$
$\Box$
3.3 Identity 3
The CDN for the expression $(x+y+z)(x y+y z+z x)$ is
$$
\left[\begin{array}{llllllll}
& & & 0 & & & \\
& & 1 & & 1 & & \\
& 1 & & 3 & & 1 & \\
0 & & 1 & & 1 & & 0
\end{array}\right]
$$
Subtracting $x y z$ gives that $(x+y+z)(x y+y z+z x)-x y z$ in $\mathrm{CDN}$ is
$$
\left[\begin{array}{lllllll}
& & & 0 & & & \\
& & 1 & & 1 & & \\
& 1 & & 3 & & 1 & \\
0 & & 1 & & 1 & & 0
\end{array}\right]-\left[\begin{array}{llllll}
& & & 0 & & & \\
& & 0 & & 0 & & \\
& 0 & & 1 & & 0 & \\
0 & & 0 & & 0 & & 0
\end{array}\right]
$$
$$
=\left[\begin{array}{lllllll}
& & & 0 & & & \\
& & 1 & & 1 & & \\
& 1 & & 2 & & 1 & \\
0 & & 1 & & 1 & & 0
\end{array}\right]
$$
but this is just $(x+y)(y+z)(z+x)$. Thus,
$$
(x+y+z)(x y+y z+z x)-x y z=(x+y)(y+z)(z+x)
$$
Rearranging a little gives that our final identity is
$$
(x y+y z+z x)(x+y+z)=(x+y)(y+z)(z+x)+x y z
$$
$\Box$
3.4 Identity 4
We will try to find another way to represent $(x+y)^{3}+(y+z)^{3}+(z+x)^{3}$. In CDN it is:
$$
\left[\begin{array}{lllllll}
& & & 2 & & & \\
& & 3 & & 3 & & \\
& 3 & & 0 & & 3 & \\
2 & & 3 & & 3 & & 2
\end{array}\right]
$$
Note that the CDN for $(x+y+z)^{3}$ as a ring of three's that we can use to cancel terms out:
$$
\left[\begin{array}{lllllll}
& & & 1 & & & \\
& & 3 & & 3 & & \\
& 3 & & 6 & & 3 & \\
1 & & 3 & & 3 & & 1
\end{array}\right]
$$
Subtracting gives that $(x+y)^{3}+(y+z)^{3}+(z+x)^{3}-(x+y+z)^{3}$ in CDN is
$$
\left[\begin{array}{lllllll}
& & & 2 & & & \\
& & 3 & & 3 & & \\
& 3 & & 0 & & 3 & \\
2 & & 3 & & 3 & & 2
\end{array}\right]-\left[\begin{array}{llllll}
& & & 1 & & & \\
& & 3 & & 3 & & \\
& 3 & & 6 & & 3 & \\
1 & & 3 & & 3 & & 1
\end{array}\right]
$$
$$
=\left[\begin{array}{ccccccc}
& & & 1 & & & \\
& & 0 & & 0 & & \\
& 0 & & -6 & & 0 & \\
1 & & 0 & & 0 & & 1
\end{array}\right]
$$
But that is just $x^{3}+y^{3}+z^{3}-6 x y z$ so
$$
(x+y)^{3}+(y+z)^{3}+(z+x)^{3}-(x+y+z)^{3}=x^{3}+y^{3}+z^{3}-6 x y z
$$
After some rearrangement we get the identity
$$
x^{3}+y^{3}+z^{3}-(x+y)^{3}-(y+z)^{3}-(z+x)^{3}+(x+y+z)^{3}=6 x y z
$$
$\Box$
3.5 Identity 5
We will represent $(x+y-z)^{3}$ in CDN:
$$
\left[\begin{array}{ccccccc}
& & & 1 & & & \\
& & 3 & & -3 & & \\
& 3 & & -6 & & 3 & \\
1 & & -3 & & 3 & & -1
\end{array}\right]
$$
This is not symmetric (at least no 3 -fold symmetry), which does not please us because our list of CDN for common expressions only has symmetric expressions. This prompts us to add this expression cyclically and represent it in CDN. We find that the CDN of $\sum_{c y c}(x+y-z)^{3}$ is
$$
\left[\begin{array}{lllllll}
& & & 1 & & & \\
& & 3 & & -3 & & \\
& 3 & & -6 & & 3 & \\
1 & & -3 & & 3 & & -1
\end{array}\right]+\left[\begin{array}{cccccc}
& & & 1 & & & \\
& & -3 & & 3 & & \\
& 3 & & -6 & & 3 & \\
-1 & & 3 & & -3 & & 1
\end{array}\right]
$$
$$
+\left[\begin{array}{lllllll}
& & & -1 & & & \\
& & 3 & & 3 & & \\
& -3 & & -6 & & -3 & \\
1 & & 3 & & 3 & & 1
\end{array}\right]=\left[\begin{array}{lllll}
& && 1 \\
& & 3 & & 3 & & \\
& 3 & & -18 & & 3 & \\
1 & & 3 & & 3 & & 1
\end{array}\right]
$$The entire outside ring looks suspiciously like the CDN for $(x+y+z)^{3}$, so let's go ahead and subtract this from $(x+y+z)^{3}$ to get that the CDN of the expression $(x+y+z)^{3}-\sum_{c y c}(x+y-z)^{3}$ is
$$
\left[\begin{array}{lllllll}
& & & 1 & & & \\
& & 3 & & 3 & & \\
& 3 & & 6 & & 3 & \\
1 & & 3 & & 3 & & 1
\end{array}\right]-\left[\begin{array}{llllll}
& & & 1 & & & \\
& & 3 & & 3 & & \\
& 3 & & -18 & & 3 & \\
1 & & 3 & & 3 & & 1
\end{array}\right]
$$
$$
=\left[\begin{array}{lllllll}
& & & 0 & & & \\
& & 0 & & 0 & & \\
& 0 & & 24 & & 0 & \\
0 & & 0 & & 0 & & 0
\end{array}\right]
$$
But this is simply just $24 x y z$. This tells us that we have found another identity:
$$
(x+y+z)^{3}-\sum_{c y c}(x+y-z)^{3}=24 x y z
$$
which in expanded form is
$$
(x+y+z)^{3}-(x+y-z)^{3}-(y+z-x)^{3}-(z+x-y)^{3}=24 x y z
$$
$\Box$ |
|