|
因为$f'(x)$非负,所以$f(x)$是$[0,1]$上的不减函数,当$x\in[0,1]$时$f(x)\ge f(0)=0$,设
\[F(x)=\left(\int_{0}^{x}f(t)dt\right)^2-\int_{0}^{x}f^3(t)dt\]
显然$F(0)=0$,两边对$x$求导得
\[F'(x)=2f(x)\int_{0}^{x}f(t)dt-f^3(x)=f(x)\left(2\int_{0}^{x}f(t)dt-f^2(x)\right)=f(x)G(x)\]
显然$G(0)=0$,两边对$x$求导得
\[G'(x)=2f(x)-2f(x)f'(x)=2f(x)(1-f'(x))\ge0\]
所以当$x\in[0,1]$时$G(x)$是不减函数,$G(x)\ge G(0)=0$,所以$F'(x)=f(x)G(x)\ge0$,因此$F(x)$也是不减函数,$F(x)\ge F(0)=0$,即
\[\int_{0}^{x}f^3(t)dt \le \left(\int_{0}^{x}f(t)dt\right)^2\]
令$x=1$即有
\[\int_{0}^{1}f^3(x)dx \le \left(\int_{0}^{1}f(x)dx\right)^2\qquad(*)\]
因为$f(x)=\int_{0}^{x}f'(t)dt+f(0)=\int_{0}^{x}f'(t)dt$,所以
\[f^2(x)=\left(\int_{0}^{x}f'(t)dt\right)^2\le\left(\int_{0}^{x}1^2dt\right)\left(\int_{0}^{x}(f'(t))^2dt\right)=(x-0)\int_{0}^{x}(f'(t))^2dt\]
两边对$x$积分得
\[
\begin{aligned}
\int_{0}^{1}f^2(x)dx &\le\int_{0}^{1}\left[(x-0)\int_{0}^{x}(f'(t))^2dt\right]dx\\
&=\int_{0}^{1}\left(\int_{0}^{x}(f'(t))^2dt\right)d\left(\frac{(x-0)^2}{2}\right)\\
&=\left[\int_{0}^{x}(f'(t))^2dt\cdot\frac{(x-0)^2}{2}\right]_{0}^{1}-\int_{0}^{1}\left(\frac{(x-0)^2}{2}\cdot\frac{\partial}{\partial x}\left(\int_{0}^{x}(f'(t))^2dt\right)\right)dx\\
&=\frac{(1-0)^2}{2}\int_{0}^{1}(f'(t))^2dt-\frac{1}{2}\color{red}{\int_{0}^{1}(x-0)^2(f'(x))^2dx}\\
&\le\frac{(1-0)^2}{2}\int_{0}^{1}(f'(t))^2dt\qquad(**)
\end{aligned}
\]
红色的积分是非负数,所以有后面的不等号,然后结合(*)(**)两个不等式就得到结果了。 |
|