Forgot password?
 Register account
View 2556|Reply 6

[不等式] 一时愣住了:基本不等式$4(a+b)=4ab+3$

[Copy link]

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

isee Posted 2020-11-7 15:16 |Read mode
Last edited by isee 2020-11-7 15:26题:已知0<a,b<1且$4(a+b)=4ab+3$,则$a+2b$的最大值为______.

好久不见,多个尾巴3,一时愣住了,当时选择了判别式法.

后来,搜了一题,原来分解因式:$$1=4(ab-a-b+1)=4(1-a)(1-b),$$所以$$a+2b=3-\big((1-a)+2(1-b)\big)\leqslant 3-2\sqrt{2(1-a)(1-b)}=3-\sqrt 2.$$

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2020-11-9 12:09

209

Threads

950

Posts

6222

Credits

Credits
6222

Show all posts

敬畏数学 Posted 2020-11-10 10:55
Last edited by 敬畏数学 2020-11-10 11:06回复 1# isee
很简单,常规的很。
$ a=\dfrac{3-4b}{4-4b}=1-\dfrac{1}{4(1-b)},a+2b=3-\dfrac{1}{4(1-b)}-2(1-b)\leqslant 3-\sqrt{2} $,等号略。为什么要搞什么分解因式这么牛叉的式子,吓人。

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

 Author| isee Posted 2020-11-13 22:27
Last edited by isee 2021-9-29 19:13回复 2# kuing

巧解,犀利
=================
今天又看了看,其实具有一般性,只是那贴两边常数一样了.

记$a+2b=t$,则
\begin{align*}
4(a+b)&=4ab+3\\
4(a+2b)&=4ab+4b+3=4b(a+1)+3\\
4t-3=2\cdot 2b(a+1)&\leqslant 2\cdot \left(\frac{t+1}2\right)^2\\
\Rightarrow 8t-6&\leqslant t^2+2t+1\\
t^2-6t+7&\geqslant 0\\
0<t&\leqslant 3-\sqrt 2
\end{align*}

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

 Author| isee Posted 2020-11-13 22:28
回复 3# 敬畏数学


化一元,化归,赞!

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

 Author| isee Posted 2020-11-13 22:34
回复 1# isee

补充一道陈题:正实数$a,b,c$满足$2a+b+c=\sqrt 6$,则$a(a+b+c)+bc$的最大值为_____.
类似上面的分解因式解

1

Threads

20

Posts

122

Credits

Credits
122

Show all posts

aipotuo Posted 2020-11-19 13:19
$xy+ax+by+c=0$基本上就是双曲线, 所以从这个角度看因式分解也可以理解为自然的.

Mobile version|Discuz Math Forum

2025-5-31 11:09 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit