Forgot password?
 Register account
View 988|Reply 1

一道含对数的数列极限

[Copy link]

459

Threads

952

Posts

9843

Credits

Credits
9843

Show all posts

青青子衿 Posted 2020-12-5 12:14 |Read mode
Last edited by 青青子衿 2020-12-19 21:32\begin{align*}
\lim_{n\to+\infty}\frac{\left(n+1\right)^2\ln\left(n+1\right)-n^2\ln\,\!n}{n\ln\,\!n}
\end{align*}

682

Threads

110K

Posts

910K

Credits

Credits
90973
QQ

Show all posts

kuing Posted 2020-12-5 14:30
这有啥难的吗,稍微变个形
\[\frac{(n+1)^2\ln(n+1)-n^2\ln n}{n\ln n}=\left( 1+\frac1n \right)^2\ln\left( 1+\frac1n \right)^n\frac1{\ln n}+2+\frac1n,\]所以极限显然就是 `2`。

Mobile version|Discuz Math Forum

2025-6-5 08:00 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit