Forgot password?
 Create new account
View 897|Reply 2

$\sum a_n$收敛,$b_n=1-\frac{\ln(1+a_n)}{a_n}$,则$\sum b_n$收敛

[Copy link]

418

Threads

1628

Posts

110K

Credits

Credits
11891

Show all posts

abababa Posted at 2020-12-10 10:36:12 |Read mode
已知$a_n>0$且$\sum_{n=1}^{\infty}a_n$收敛,记$b_n=1-\frac{\ln(1+a_n)}{a_n}$,求证$\sum_{n=1}^{\infty} b_n$收敛。

700

Threads

110K

Posts

910K

Credits

Credits
94172
QQ

Show all posts

kuing Posted at 2020-12-10 13:50:33
这个其实不算高数题,就是简单的 ln 放缩……

由 `\ln(1+a_n)<a_n` 知 `b_n>0`;

因为当 `x>0` 时 `\ln(1+x)>x-x^2/2`,得到 `b_n<a_n/2`。

418

Threads

1628

Posts

110K

Credits

Credits
11891

Show all posts

 Author| abababa Posted at 2020-12-11 08:48:53
回复 2# kuing

原来如此,谢谢,我怎么就没想到把ln展成多项式呢。

手机版Mobile version|Leisure Math Forum

2025-4-21 14:34 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list