Forgot password
 Register account
View 1027|Reply 2

[分析/方程] $\sum a_n$收敛,$b_n=1-\frac{\ln(1+a_n)}{a_n}$,则$\sum b_n$收敛

[Copy link]

414

Threads

1641

Posts

15

Reputation

Show all posts

abababa posted 2020-12-10 10:36 |Read mode
已知$a_n>0$且$\sum_{n=1}^{\infty}a_n$收敛,记$b_n=1-\frac{\ln(1+a_n)}{a_n}$,求证$\sum_{n=1}^{\infty} b_n$收敛。

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2020-12-10 13:50
这个其实不算高数题,就是简单的 ln 放缩……

由 `\ln(1+a_n)<a_n` 知 `b_n>0`;

因为当 `x>0` 时 `\ln(1+x)>x-x^2/2`,得到 `b_n<a_n/2`。

414

Threads

1641

Posts

15

Reputation

Show all posts

original poster abababa posted 2020-12-11 08:48
回复 2# kuing

原来如此,谢谢,我怎么就没想到把ln展成多项式呢。

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-21 05:47 GMT+8

Powered by Discuz!

Processed in 0.091421 seconds, 22 queries