Forgot password?
 Register account
View 1233|Reply 8

[函数] $g(x)=e^x+\sin x+\cos x\geqslant 2+ax$

[Copy link]

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

isee Posted 2021-1-25 15:50 |Read mode
其实就是八考联考的导数第(2)问:

若$g(x)=e^x+\sin x+\cos x\geqslant 2+ax$,求$a$的范围.


个人变形为$G(x)=(2+ax-\sin x-\cos x)\mathrm{e}^{-x}\leqslant 1$,$G'(x)=\mathrm{e}^{-x}(2\sin x-ax+a-2)$,能够猜出$a=2$,当$a\ne 2$要说清晰还是麻烦的,不知有没有相对讨论较少的方法呢?

坛里见过战巡利用泰勒展开式三个相当证过某个不等式,现在正在翻查中

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

 Author| isee Posted 2021-1-25 16:00
回复 1# isee

翻到一个,不过,好像得变通变通才能用,链接里是对数

25

Threads

1011

Posts

110K

Credits

Credits
12665

Show all posts

战巡 Posted 2021-1-25 17:23
回复 1# isee

$g(x)$过$(0,2)$,$2+ax$也过$(0,2)$,要想恒大于等于只能相切

107

Threads

225

Posts

2905

Credits

Credits
2905

Show all posts

facebooker Posted 2021-1-25 19:04
回复 1# isee


   感觉第二问要用到第一问的结论 这才是高考阶梯风格啊

1

Threads

2

Posts

15

Credits

Credits
15

Show all posts

烦心 Posted 2021-1-25 20:58
f(x)=ex+sinx+cosx-ax-2,猜到a=1/2(可利用必要性探路),发现f(0)=0。只需说明当a≠1/2时,f'(0)≠0。

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

 Author| isee Posted 2021-1-25 21:36
回复 4# facebooker

第(1)问那个函数及结论其实是$g''(x)=\mathrm{e}^x-\sin x-\cos x>0,x>-5\pi/4$.
即此时$g(x)$下凸,再由3#,更佳肯定只能相切了.

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

 Author| isee Posted 2021-1-25 21:39
f(x)=ex+sinx+cosx-ax-2,猜到a=1/2(可利用必要性探路),发现f(0)=0。只需说明当a≠1/2时,f'(0)≠0。 ...
烦心 发表于 2021-1-25 20:58
在看到的公式上右键,Show Math As ,下的 ,Tex Commands ,就看到公式代码了,这种公式形式是$\mathrm\LaTeX$,如果感觉兴趣,可以瞧瞧论坛置顶帖

1

Threads

2

Posts

15

Credits

Credits
15

Show all posts

烦心 Posted 2021-1-25 23:05
回复 7# isee

谢谢

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

 Author| isee Posted 2021-1-25 23:18
回复 8# 烦心

不客气

Mobile version|Discuz Math Forum

2025-5-31 10:45 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit