Forgot password
 Register account
View 727|Reply 2

分类讨论一道变限积分

[Copy link]

461

Threads

959

Posts

4

Reputation

Show all posts

青青子衿 posted 2021-1-26 22:16 |Read mode
Last edited by 青青子衿 2024-9-22 16:00\begin{align*}
\int_{0}^{x}\frac{1}{\sqrt{\left(1-t\right)\left(1-kt\right)}}\mathrm{d}t
=
\frac{2}{\sqrt{k}}\ln\left(\frac{\sqrt{k\left(1-x\right)}-\sqrt{1-kx}}{\sqrt{k}-1}\right)
\end{align*}

当k<0的情况是?


积分大典
2.562

48

Threads

771

Posts

93

Reputation

Show all posts

Czhang271828 posted 2021-1-27 12:15
直接查积分表得:

$\displaystyle
\int\frac{dx}{\sqrt{ax^{2}+bx+c}}=\frac{1}{\sqrt{-a}}\sin^{-1}\frac{-2ax-b}{\sqrt{b^{2}-4ac}},\quad a<0
$

461

Threads

959

Posts

4

Reputation

Show all posts

original poster 青青子衿 posted 2024-9-22 16:02
再Mark一个
\begin{align*}
\int_{0}^{x}\frac{{\mathrm{d}}t}{\left(1-At^{2}\right)\sqrt{1-Bt^{2}}}=
\frac{1}{\sqrt{A-B}}\operatorname{arctanh}\left(\frac{\sqrt{A-B}x}{\sqrt{1-Bx^{2}}}\right)
\end{align*}
A^2>B^2

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-20 05:50 GMT+8

Powered by Discuz!

Processed in 0.012709 seconds, 23 queries