Forgot password?
 Create new account
View 561|Reply 2

分类讨论一道变限积分

[Copy link]

462

Threads

969

Posts

9934

Credits

Credits
9934

Show all posts

青青子衿 Posted at 2021-1-26 22:16:23 |Read mode
Last edited by 青青子衿 at 2024-9-22 16:00:00\begin{align*}
\int_{0}^{x}\frac{1}{\sqrt{\left(1-t\right)\left(1-kt\right)}}\mathrm{d}t
=
\frac{2}{\sqrt{k}}\ln\left(\frac{\sqrt{k\left(1-x\right)}-\sqrt{1-kx}}{\sqrt{k}-1}\right)
\end{align*}

当k<0的情况是?


积分大典
2.562

48

Threads

969

Posts

110K

Credits

Credits
14870
QQ

Show all posts

Czhang271828 Posted at 2021-1-27 12:15:27
直接查积分表得:

$\displaystyle
\int\frac{dx}{\sqrt{ax^{2}+bx+c}}=\frac{1}{\sqrt{-a}}\sin^{-1}\frac{-2ax-b}{\sqrt{b^{2}-4ac}},\quad a<0
$

462

Threads

969

Posts

9934

Credits

Credits
9934

Show all posts

 Author| 青青子衿 Posted at 2024-9-22 16:02:14
再Mark一个
\begin{align*}
\int_{0}^{x}\frac{{\mathrm{d}}t}{\left(1-At^{2}\right)\sqrt{1-Bt^{2}}}=
\frac{1}{\sqrt{A-B}}\operatorname{arctanh}\left(\frac{\sqrt{A-B}x}{\sqrt{1-Bx^{2}}}\right)
\end{align*}
A^2>B^2

手机版Mobile version|Leisure Math Forum

2025-4-20 22:13 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list