Forgot password?
 Register account
View 1926|Reply 9

[函数] 微分函数方程

[Copy link]

459

Threads

952

Posts

9843

Credits

Credits
9843

Show all posts

青青子衿 Posted 2013-11-9 13:24 |Read mode
$f'(x) =f(x+\frac{1}{e})$
$f'(x) =f(x+1)$

24

Threads

1010

Posts

110K

Credits

Credits
12655

Show all posts

战巡 Posted 2013-11-9 14:06
回复 1# 青青子衿


硬来呗...

\[f(x)=ae^{bx}\]
对于第一个,有
\[f'(x)-f(x+\frac{1}{e})=ae^{bx}(e^{\frac{b}{e}}-b)=0\]
\[e^{\frac{b}{e}}-b=0,b=e\]
于是通解就是
\[f(x)=ae^{ex}\]
其中$a\in R$

第二个类似,只是$b$变成$b=ln(b)$的解,最后解出复数,应该会变成三角式

7

Threads

52

Posts

393

Credits

Credits
393

Show all posts

icesheep Posted 2013-11-9 17:38
回复 2# 战巡


    为啥能这么设 =。=

24

Threads

1010

Posts

110K

Credits

Credits
12655

Show all posts

战巡 Posted 2013-11-9 17:40
回复 3# icesheep
所以说是硬来嘛,不过起码管用,至少这是一部分解

7

Threads

52

Posts

393

Credits

Credits
393

Show all posts

icesheep Posted 2013-11-12 19:22
Last edited by hbghlyj 2025-5-7 00:48UCL Undergrad Maths Colloquium
uclmaths.org
Facebook: 'UCL Undergraduate Maths Colloquium'
Try your hardest.
Tuesday 12th November
If you can solve the following differential equation, don't come to the colloquium this Tuesday - otherwise, see you there:\[
\frac{d}{d x} f(x)=f(x-1)
\]Speaker: Rahul Mane
UCL, Year 1
5pm UCLU Building, Room 707
真巧海叉也问了这个题,看来应该是有办法严格地解的。

682

Threads

110K

Posts

910K

Credits

Credits
90973
QQ

Show all posts

kuing Posted 2013-11-12 20:13
群里有人说这种叫时滞微分方程

682

Threads

110K

Posts

910K

Credits

Credits
90973
QQ

Show all posts

kuing Posted 2013-11-12 20:42
好高级的东东……

459

Threads

952

Posts

9843

Credits

Credits
9843

Show all posts

 Author| 青青子衿 Posted 2013-11-23 11:16
$f'(x)=f (x+1)$
$(e^{\alpha x})'=\alpha e^{\alpha x}$
$\alpha e^{\alpha x}=e^\alpha e^{\alpha x}= e^{\alpha x+\alpha}= e^{\alpha(x+1)}$
$z=a+bi$
$e^z=z$
$e^{a+bi}=a+bi$
$e^ae^bi=e^a(\cos b+i\sin b)= e^a\cos b+ie^a\sin b$
$\begin{cases}
e^a\cos b=a \\
e^a\sin b=b  \end{cases}$
$\Longrightarrow$
$\begin{cases}
e^a =\frac{b}{\sin b} \\
\cos b=\frac{a}{e^a} \end{cases}$
$\frac{b}{\tan b}=\ln\frac{b}{\sin b}$

7

Threads

52

Posts

393

Credits

Credits
393

Show all posts

icesheep Posted 2013-11-23 21:33
你这能求出多少来,用 Lambert W function 表达的。解空间是无限维的。

3153

Threads

7906

Posts

610K

Credits

Credits
64096
QQ

Show all posts

hbghlyj Posted 2022-8-21 00:57
How find this function $f(x)=ae^{ex}$ other solution?

zh.wikipedia.org/wiki/时滞微分方程#特征方程
特征方程是一个非线性特征问题, 有许多计算谱的数值方法. 少数的特殊情况可以显式地求解特征方程. 例如, 时滞微分方程$$\frac{d}{dt}x(t)=-x(t-1)$$的特征方程是$$-\lambda-e^{-\lambda}=0$$这个方程对于变量 $λ$ 有无穷多个复数解. 复解可表示为$$\lambda=W_K(-1)$$其中$W_K$是朗伯W函数的第$K$个分支.

Mobile version|Discuz Math Forum

2025-6-5 01:03 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit