Forgot password?
 Create new account
View 1784|Reply 9

微分函数方程

[Copy link]

462

Threads

969

Posts

9934

Credits

Credits
9934

Show all posts

青青子衿 Posted at 2013-11-9 13:24:11 |Read mode
$f'(x) =f(x+\frac{1}{e})$
$f'(x) =f(x+1)$

25

Threads

1020

Posts

110K

Credits

Credits
12672

Show all posts

战巡 Posted at 2013-11-9 14:06:44
回复 1# 青青子衿


硬来呗...

\[f(x)=ae^{bx}\]
对于第一个,有
\[f'(x)-f(x+\frac{1}{e})=ae^{bx}(e^{\frac{b}{e}}-b)=0\]
\[e^{\frac{b}{e}}-b=0,b=e\]
于是通解就是
\[f(x)=ae^{ex}\]
其中$a\in R$

第二个类似,只是$b$变成$b=ln(b)$的解,最后解出复数,应该会变成三角式

7

Threads

53

Posts

398

Credits

Credits
398

Show all posts

icesheep Posted at 2013-11-9 17:38:05
回复 2# 战巡


    为啥能这么设 =。=

25

Threads

1020

Posts

110K

Credits

Credits
12672

Show all posts

战巡 Posted at 2013-11-9 17:40:25
回复 3# icesheep
所以说是硬来嘛,不过起码管用,至少这是一部分解

7

Threads

53

Posts

398

Credits

Credits
398

Show all posts

icesheep Posted at 2013-11-12 19:22:16

海叉

海叉


真巧海叉也问了这个题,看来应该是有办法严格地解的。

701

Threads

110K

Posts

910K

Credits

Credits
94172
QQ

Show all posts

kuing Posted at 2013-11-12 20:13:45
群里有人说这种叫时滞微分方程

701

Threads

110K

Posts

910K

Credits

Credits
94172
QQ

Show all posts

kuing Posted at 2013-11-12 20:42:03
好高级的东东……

462

Threads

969

Posts

9934

Credits

Credits
9934

Show all posts

 Author| 青青子衿 Posted at 2013-11-23 11:16:11

$f'(x)=f (x+1)$
$(e^{\alpha x})'=\alpha e^{\alpha x}$
$\alpha e^{\alpha x}=e^\alpha e^{\alpha x}= e^{\alpha x+\alpha}= e^{\alpha(x+1)}$
$z=a+bi$
$e^z=z$
$e^{a+bi}=a+bi$
$e^ae^bi=e^a(\cos b+i\sin b)= e^a\cos b+ie^a\sin b$
$\begin{cases}
e^a\cos b=a \\
e^a\sin b=b  \end{cases}$
$\Longrightarrow$
$\begin{cases}
e^a =\frac{b}{\sin b} \\
\cos b=\frac{a}{e^a} \end{cases}$
$\frac{b}{\tan b}=\ln\frac{b}{\sin b}$

7

Threads

53

Posts

398

Credits

Credits
398

Show all posts

icesheep Posted at 2013-11-23 21:33:07
你这能求出多少来,用 Lambert W function 表达的。解空间是无限维的。

3146

Threads

8493

Posts

610K

Credits

Credits
66158
QQ

Show all posts

hbghlyj Posted at 2022-8-21 00:57:38
How find this function $f(x)=ae^{ex}$ other solution?

zh.wikipedia.org/wiki/时滞微分方程#特征方程
特征方程是一个非线性特征问题, 有许多计算谱的数值方法. 少数的特殊情况可以显式地求解特征方程. 例如, 时滞微分方程$$\frac{d}{dt}x(t)=-x(t-1)$$的特征方程是$$-\lambda-e^{-\lambda}=0$$这个方程对于变量 $λ$ 有无穷多个复数解. 复解可表示为$$\lambda=W_K(-1)$$其中$W_K$是朗伯W函数的第$K$个分支.

手机版Mobile version|Leisure Math Forum

2025-4-20 22:02 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list