|
楼主 |
青青子衿
发表于 2024-1-22 19:18
本帖最后由 青青子衿 于 2024-2-12 19:39 编辑
\begin{align*}
\frac{\partial\,\Phi(y,V)}{\partial\,s}&=\frac{\partial\,\Phi(y,V)}{\partial\,V}\cdot\frac{\partial\,V}{\partial\,s}+\frac{\partial\,\Phi(y,V)}{\partial\,y}\cdot\frac{\partial\,y}{\partial\,s}\\
&=\left(\dfrac{\mathcal{E}(y,V)}{{2V(1-V)}}-\dfrac{\Phi(y,V)}{2V}-\tfrac{y\cdot(1-y^2)}{2(1-V)}\cdot\frac{\partial\,\Phi(y,V)}{\partial\,y}\right)\cdot\tfrac{\partial\,V}{\partial\,s}\\
&\qquad\quad+\frac{\partial\,\Phi(y,V)}{\partial\,y}\cdot\frac{\partial\,y}{\partial\,s}\\
&=\dfrac{\frac{\partial\,V}{\partial\,s}}{2V(1-V)}\cdot\mathcal{E}(y,V)-\dfrac{\frac{\partial\,V}{\partial\,s}}{2VM}\cdot\Phi(x,U)\\
&\qquad\qquad+\frac{\partial\,\Phi(y,V)}{\partial\,y}\cdot\left(\frac{\partial\,y}{\partial\,s}-\dfrac{y\!\cdot\!(1-y^2)}{2(1-V)}\cdot\frac{\partial\,V}{\partial\,s}\right)\\
&=\dfrac{\frac{\partial\,V}{\partial\,s}}{2V(1-V)}\cdot\mathcal{E}(y,V)-\dfrac{\frac{\partial\,V}{\partial\,s}}{2VM}\cdot\Phi(x,U)\\
&\qquad\qquad+\frac{\frac{\partial\,\Phi(x,U)}{\partial\,x}}{M}\cdot\dfrac{\frac{\partial\,y}{\partial\,s}-\frac{y\cdot(1-y^2)}{2(1-V)}\cdot\frac{\partial\,V}{\partial\,s}}{\frac{\partial\,y}{\partial\,x}}\\
\end{align*}
\begin{align*}
\\
\frac{\partial}{\partial\>\!s}\left(\frac{\Phi(x,U)}{M}\right)&=\frac{\partial\>\!(\frac{1}{M})}{\partial\>\!s}\cdot\Phi(x,U)+\frac{\frac{\partial\,U}{\partial\>\!s}}{M}\cdot\frac{\partial\,\Phi(x,U)}{\partial\,U}\\
&=\left(-\frac{\frac{\partial\>\!M}{\partial\>\!s}}{M^2}-\frac{\frac{\partial\>\!U}{\partial\>\!s}}{2UM}\right)\cdot\Phi(x,U)\\
&\qquad\quad+\frac{\frac{\partial\>\!U}{\partial\>\!s}}{2U\left(1-U\right)M}\cdot\mathcal{E}(x,U)\\
&\qquad\qquad\quad-\frac{\frac{\partial\,\Phi(x,U)}{\partial\,x}}{M}\cdot\frac{x(1-x^2)\frac{\partial\>\!U}{\partial\>\!s}}{2(1-U)}\\
\end{align*}
\begin{align*}
\frac{\partial\>\!\Delta}{\partial\>\!s}&=\frac{\partial\,\Phi(y,V)}{\partial\>\!s}
-\frac{\partial}{\partial\>\!s}\left(\frac{\Phi(x,U)}{M}\right)\\
&=\left(\frac{\frac{\partial\>\!M}{\partial\>\!s}}{M^2}+\frac{\frac{\partial\>\!U}{\partial\>\!s}}{2UM}-\dfrac{\frac{\partial\,V}{\partial\,s}}{2VM}\right)\cdot\Phi(x,U)\\
&\qquad\quad+\dfrac{\frac{\partial\>\!V}{\partial\>\!s}}{2V(1-V)}\cdot\mathcal{E}(y,V)-\frac{\frac{\partial\>\!U}{\partial\>\!s}}{2U\left(1-U\right)M}\cdot\mathcal{E}(x,U)\\
&\qquad\qquad\quad+\frac{\frac{\partial\,\Phi(x,U)}{\partial\>\!x}}{M}\cdot\left(\frac{x(1-x^2)\frac{\partial\>\!U}{\partial\>\!s}}{2(1-U)}+\dfrac{\frac{\partial\,y}{\partial\,s}-\frac{y\cdot(1-y^2)}{2(1-V)}\cdot\frac{\partial\,V}{\partial\,s}}{\frac{\partial\,y}{\partial\,x}}\right)\\
\end{align*}
\begin{align*}
\dfrac{\frac{\partial\>\!V}{\partial\>\!s}}{2V(1-V)}\cdot\mathcal{E}(y,V)
&=\frac{\frac{\partial\>\!U}{\partial\>\!s}}{2U\left(1-U\right)M}\cdot\mathcal{E}(x,U)
\\
&\qquad\quad+\left(\dfrac{\frac{\partial\>\!V}{\partial\>\!s}}{2VM}-\frac{\frac{\partial\>\!U}{\partial\>\!s}}{2UM}-\frac{\frac{\partial\>\!M}{\partial\>\!s}}{M^2}\right)\cdot\Phi(x,U)\\
&\qquad\qquad\quad-\frac{\frac{\partial\>\!\Phi(x,U)}{\partial\>\!x}}{M}\cdot\left(\frac{x(1-x^2)\frac{\partial\>\!U}{\partial\>\!s}}{2(1-U)}+\dfrac{\frac{\partial\>\!y}{\partial\>\!s}-\frac{y\cdot(1-y^2)}{2(1-V)}\cdot\frac{\partial\>\!V}{\partial\>\!s}}{\frac{\partial\>\!y}{\partial\>\!x}}\right)\\
\end{align*}
- \Phi\left(x,\varphi\right)=\int_{0}^{x}\frac{1}{\sqrt{\left(1-t^{2}\right)\left(1-\varphi t^{2}\right)}}dt
- \Phi_{V}\left(\varphi,x\right)=\frac{d}{dx}\left(\Phi\left(\varphi,x\right)\right)
- \Phi_{x}\left(x,\varphi\right)=\frac{d}{dx}\left(\Phi\left(x,\varphi\right)\right)
- V\left(x,\nu\right)=x\left(\frac{x+2}{2x+1}\right)^{3}
- V_{s}\left(x,\nu\right)=\frac{d}{dx}\left(V\left(x,\nu\right)\right)
- Y\left(x,\varphi\right)=\frac{x\left(1+2\varphi+\varphi^{2}x^{2}\right)}{1+2\varphi x^{2}+\varphi^{2}x^{2}}
- Y_{s}\left(\varphi,x\right)=\frac{d}{dx}\left(Y\left(\varphi,x\right)\right)
- \Phi_{sY}\left(\varphi,x,\nu\right)=\frac{d}{dx}\Phi\left(Y\left(\varphi,x\right),V\left(x,\nu\right)\right)
- s=0.68
- \Phi_{V}\left(x,s\right)
- \frac{\int_{0}^{x}\sqrt{\frac{1-st^{2}}{1-t^{2}}}dt}{2s(1-s)}-\frac{\int_{0}^{x}\frac{1}{\sqrt{\left(1-t^{2}\right)\left(1-st^{2}\right)}}dt}{2s}-\frac{x\sqrt{1-x^{2}}}{2(1-s)\sqrt{1-sx^{2}}}
- \Phi_{sY}\left(x,s,\nu\right)
- \Phi_{V}\left(Y\left(x,s\right),V\left(s,\nu\right)\right)\cdot V_{s}\left(s,\nu\right)+\Phi_{x}\left(Y\left(x,s\right),V\left(s,\nu\right)\right)\cdot Y_{s}\left(x,s\right)
- M\left(x,\nu\right)=\frac{1}{2x+1}
- U\left(x,\nu\right)=\frac{x^{3}\left(x+2\right)}{2x+1}
- \varepsilon\left(x,\varphi\right)=\int_{0}^{x}\sqrt{\frac{1-\varphi t^{2}}{1-t^{2}}}dt
- Y_{x}\left(x,\varphi\right)=\frac{d}{dx}\left(Y\left(x,\varphi\right)\right)
- \left(\frac{\varepsilon\left(Y\left(x,s\right),V\left(s,\nu\right)\right)}{2V\left(s,\nu\right)(1-V\left(s,\nu\right))}-\frac{\Phi\left(x,U\left(s,\nu\right)\right)}{2V\left(s,\nu\right)M\left(s,\nu\right)}\right)\cdot V_{s}\left(s,\nu\right)+\frac{\Phi_{x}\left(x,U\left(s,\nu\right)\right)}{M\left(s,\nu\right)}\cdot\left(\frac{Y_{s}\left(x,s\right)-\frac{Y\left(x,s\right)\left(1-Y\left(x,s\right)^{2}\right)}{2(1-V\left(s,\nu\right))}V_{s}\left(s,\nu\right)}{Y_{x}\left(x,s\right)}\right)
- \frac{(1+2s)^{2}\varepsilon\left(Y\left(x,s\right),V\left(s,\nu\right)\right)}{s\left(1-s^{2}\right)(2+s)}-\frac{(s-1)^{2}\Phi\left(x,U\left(s,\nu\right)\right)}{s(2+s)}-\frac{x(1-x^{2})\left(2+4s+3s^{2}+2s^{3}x^{2}+s^{4}x^{2}\right)}{(1-s^{2})\left(1+2sx^{2}+s^{2}x^{2}\right)}\Phi_{x}\left(x,U\left(s,\nu\right)\right)
- \Phi_{sM}\left(\varphi,x,\nu\right)=\frac{d}{dx}\left(\frac{\Phi\left(\varphi,U\left(x,\nu\right)\right)}{M\left(x,\nu\right)}\right)
- M_{s}\left(x,\nu\right)=\frac{d}{dx}\left(M\left(x,\nu\right)\right)
- U_{s}\left(x,\nu\right)=\frac{d}{dx}\left(U\left(x,\nu\right)\right)
- \Phi_{sM}\left(x,s,\nu\right)
- \Phi\left(x,U\left(s,\nu\right)\right)\cdot\left(-\frac{M_{s}\left(s,\nu\right)}{M\left(s,\nu\right)^{2}}-\frac{U_{s}\left(s,\nu\right)}{2U\left(s,\nu\right)M\left(s,\nu\right)}\right)+\frac{U_{s}\left(s,\nu\right)}{2U\left(s,\nu\right)\left(1-U\left(s,\nu\right)\right)M\left(s,\nu\right)}\cdot\varepsilon\left(x,U\left(s,\nu\right)\right)-\frac{\Phi_{x}\left(x,U\left(s,\nu\right)\right)}{M\left(s,\nu\right)}\cdot\frac{x\left(1-x^{2}\right)U_{s}\left(s,\nu\right)}{2\left(1-U\left(s,\nu\right)\right)}
- \frac{3(1+2s)\varepsilon\left(x,U\left(s,\nu\right)\right)}{s(s+2)(1-s^{2})}-\frac{\left(3+2s+s^{2}\right)\Phi\left(x,U\left(s,\nu\right)\right)}{s(2+s)}-\frac{3s^{2}x\left(1-x^{2}\right)\Phi_{x}\left(x,U\left(s,\nu\right)\right)}{(1-s^{2})}
复制代码
\begin{align*}
\frac{\partial\,\Phi(y,V)}{\partial\>\!s}&=\frac{(1+2s)^{2}}{s(1-s^{2})(2+s)}\int_{0}^{\frac{x(1+2s+s^{2}x^{2})}{1+2sx^{2}+s^{2}x^{2}}}\sqrt{\small{\frac{1-s({\scriptsize\,\!\frac{2+s}{1+2s}})^{3}t^{2}}{1-t^{2}}}}\mathrm{d}t\\
&\qquad\>\>-\frac{(1-s)^{2}}{s(2+s)}\int_{0}^{x}\frac{\mathrm{d}t}{\sqrt{(1-t^{2})(1-{\scriptsize{\frac{s^{3}(2+s)}{1+2s}}}t^{2})}}\\
&\qquad\qquad-\frac{x\left(2+4s+3s^{2}+2s^{3}x^{2}+s^{4}x^{2}\right)\sqrt{1-x^{2}}}{(1-s^{2})\left(1+2sx^{2}+s^{2}x^{2}\right)\sqrt{1-{\scriptsize{\frac{s^{3}(2+s)}{1+2s}}}x^{2}}}
\end{align*} |
|