|
Last edited by hbghlyj 2021-3-6 15:00
$\forall n\in\mathbb Z$,直线$A_nA_{n+2}$通过P,$\triangle A_nA_{n+1}A_{n+2}$满足$A_nA_{n+2}:A_{n+1}A_{n+2}=A_{n+1}A_{n+2}:A_nA_{n+1}=r>1$,$A_1A_2=1$,则所有$A_{2n}$在一条对数螺旋上,所有$A_{2n-1}$在一条对数螺旋上.
求证:所有$A_{n}$在一条对数螺旋上,当且仅当,$r=\sqrt{\phi},\phi=\frac{\sqrt5+1}2$.
---------------
设P(0,0),$A_{-1}A_0=r^k$,则$PA_1=\frac{r^2}{r^k+1},PA_2=\frac{\sqrt{r^{2k}+r^k-r^{k+4}+r^{k+2}+r^2}}{r^k+1}$.
由$△PA_kA_{k+1}\sim△PA_{k+2}A_{k+3}$得这两个螺旋关于原点位似.
记$\theta_2=\angle A_1PA_2$,则\[\cos{\theta_2}=\frac{PA_2^2+PA_1^2-A_2A_1^2}{2PA_2\cdot P A_1}=\frac{-r^{k+4}-r^k+r^{k+2}+r^4+r^2-1}{2r^2\sqrt{r^{2k}+r^k-r^{k+4}+r^{k+2}+r^2}}\]
所有$A_{2n}$在对数螺旋$\rho=PA_2\cdot r^\frac{k\left(\theta-\theta_2\right)}{\pi}$上.
令θ=0,方程化为$\rho=PA_2\cdot r^{-\frac{k\theta_2}{\pi}}$,所以$H\left(PH\cdot r^\frac{k\theta}{\pi},0\right)$为起始点.
这两个螺旋相同⇔$A_1=H$⇔$\frac{r^2}{r^k+1}=\frac{\sqrt{r^{2k}+r^k-r^{k+4}+r^{k+2}+r^2}}{r^k+1}\cdot r^{-\frac{k\theta_2}{\pi}}$⇔\[r^{4+\frac{2k\theta_2}{\pi}}=r^{2k}+r^k-r^{k+4}+r^{k+2}+r^2.\]
---------------
例子:当$r=\sqrt\phi,k=2$时,$\theta_2=\frac\pi2,A_1=H=\left(\frac{1}{\phi},0\right)$,两个对数螺旋重合.可以代入上面那两个方程来检验. |
|