Forgot password?
 Create new account
Author: abababa

分圆多项式在有理数域上不可约

[Copy link]

3147

Threads

8493

Posts

610K

Credits

Credits
66163
QQ

Show all posts

hbghlyj Posted at 2022-12-14 04:48:28
Czhang271828 发表于 2021-6-16 08:28
回复 20# abababa
...
我们必须从半群谈起:半群由集合$S$和一个二元运算$\ast$构成,满足封闭性:$\forall x,y\in S:x\ast y\in S$。
补充: $*$ 满足结合律.

3147

Threads

8493

Posts

610K

Credits

Credits
66163
QQ

Show all posts

hbghlyj Posted at 2022-12-14 05:07:50
Czhang271828 发表于 2021-6-16 08:28
回复 20# abababa
...
单位根是本原根,若且仅若每个根的阶为$\varphi(360)=\varphi(8)\varphi(9)\varphi(5)=\color{#f00}{2^3}\cdot 3\cdot 4$。

这里$\varphi(8)=4$.

3147

Threads

8493

Posts

610K

Credits

Credits
66163
QQ

Show all posts

hbghlyj Posted at 2022-12-14 05:24:05
Czhang271828 发表于 2021-6-16 08:28
回复 20# abababa
...
$(1,2)$和$(1,1)$为其本原根,对应回去是$5$和$\color{red}{11}$。

$(1,1)$对应于$1$吧.
补充: WolframAlpha

3147

Threads

8493

Posts

610K

Credits

Credits
66163
QQ

Show all posts

hbghlyj Posted at 2022-12-14 05:45:35
Czhang271828 发表于 2021-6-16 08:28
回复 20# abababa
...
比如$\mathbb Z_{63}^*\cong\mathbb Z_6\oplus\mathbb Z_6=(\mathbb Z_2)^2\oplus\color{red}{(\mathbb Z_2)^3}$。从而$63$无原根。

红色部分似乎应该是$(\mathbb Z_3)^2$.

3147

Threads

8493

Posts

610K

Credits

Credits
66163
QQ

Show all posts

hbghlyj Posted at 2022-12-19 09:19:45
Czhang271828 发表于 2022-2-20 16:03
回复 37# hbghlyj

不客气, 交换图标直接可于此处直接生成. 码字前加花括号 $\{\}$ 以规避乱码, 推荐 F12  ...
交换图表tikzcd也可以使用本论坛的i.upmath.me插入:

怎么和35#不太一样我看下

手机版Mobile version|Leisure Math Forum

2025-4-20 22:20 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list