Forgot password?
 Register account
View 1845|Reply 8

[几何] 这道题有巧解吗?

[Copy link]

31

Threads

42

Posts

400

Credits

Credits
400

Show all posts

longma Posted 2021-4-26 13:34 |Read mode
Last edited by hbghlyj 2025-4-6 04:04
如图,在△ABC中,AB=c, ∠A=$α$ (30°$<α<$45°), ∠C=90°,边AC的中点为M,边AB上的点P(不是AB的中点)满足PC=$\frac c2$,PC与BM的交点为D,则CD的长为      (用c,a表示)

31

Threads

42

Posts

400

Credits

Credits
400

Show all posts

 Author| longma Posted 2021-4-28 14:43
自问自答,也许这是出题的本意解法?
202104281440.png
这是2021年4月18日上海高中数学竞赛第8题,填空最后一题。
让别人懂,才是有意义的!

682

Threads

110K

Posts

910K

Credits

Credits
90973
QQ

Show all posts

kuing Posted 2021-4-28 15:31
QQ截图20210428152511.png
由圆幂定理有
\[BP\cdot BE=BC^2-r^2\iff BP\cdot\frac c2=c^2\sin^2\alpha-\frac{c^2}4\iff BP=2c\sin^2\alpha-\frac c2,\]由梅氏定理有
\[\frac{CD}{DP}\cdot\frac{PB}{BA}\cdot\frac{AM}{MC}=1\iff\frac{CD}{\frac c2-CD}\left(2\sin^2\alpha-\frac12\right)=1\iff CD=\frac c{1+4\sin^2\alpha}.\]

31

Threads

42

Posts

400

Credits

Credits
400

Show all posts

 Author| longma Posted 2021-4-28 16:37
酷版,求BP无须用圆幂定理哈,但作为竞赛考“美你老师”定理倒应该是本意!
酷版出手,不同凡响!

682

Threads

110K

Posts

910K

Credits

Credits
90973
QQ

Show all posts

kuing Posted 2021-4-28 17:39
回复 4# longma

写起来简单就好,实际上这里梅氏定理也很容易绕过:
过 P 作 AC 的平行线交 BM 于 Q,则 `BP:BA=PQ:AM=PQ:CM=PD:DC`。

54

Threads

959

Posts

9977

Credits

Credits
9977

Show all posts

乌贼 Posted 2021-5-3 10:33
作C点在AB上垂足F,先求出BP长度。取CP中点E,两三角形相似可求出DP长度即可。

54

Threads

959

Posts

9977

Credits

Credits
9977

Show all posts

乌贼 Posted 2021-5-3 12:04
Last edited by 乌贼 2021-5-3 12:12回复 6# 乌贼
或在三角形BPC中由余弦定理求出BP(取小值),再相似求DP

682

Threads

110K

Posts

910K

Credits

Credits
90973
QQ

Show all posts

kuing Posted 2021-5-5 14:40
回复 7# 乌贼

好久没见

3153

Threads

7906

Posts

610K

Credits

Credits
64096
QQ

Show all posts

hbghlyj Posted 2025-4-6 03:50

Mobile version|Discuz Math Forum

2025-6-5 01:18 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit