Forgot password?
 Register account
View 780|Reply 3

一道积分收敛证明征解题

[Copy link]

48

Threads

771

Posts

110K

Credits

Credits
13880
QQ

Show all posts

Czhang271828 Posted 2021-5-2 11:30 |Read mode
设$f$为$[0,\infty)$上的连续可微函数,同时$f(0) >0$、$f'(x) >0$。若
\[ \int_0^\infty\dfrac{\mathrm dx}{f'+f}<\infty \]
求证
\[ \int_0^\infty\dfrac{\mathrm dx}{f}<\infty \]
无钱佮歹看、无样佮歹生、无汉草佮无文采、无学历佮无能力、无高度无速度无力度共闲无代志。(闽南话)
口号:疼惜生命,远离内卷。

411

Threads

1634

Posts

110K

Credits

Credits
11888

Show all posts

abababa Posted 2021-5-2 13:34
回复 1# Czhang271828
发网友的解答:
$f'(x)>0$说明$f(x)$是增函数,所以$f(x) \ge f(0) > 0$,即在积分区间上$f(x)$是正的,还有$\frac{1}{f(x)} \le \frac{1}{f(0)}$,当$x \to \infty$时也有$\frac{1}{f(x)} \le \frac{1}{f(0)}$有界。
\[\int_{0}^{\infty}\frac{1}{f}dx-\int_{0}^{\infty}\frac{1}{f'+f}dx = \int_{0}^{\infty}\frac{f'}{f^2+ff'}dx \le \int_{0}^{\infty}\frac{f'}{f^2}dx = [-\frac{1}{f}]_{0}^{\infty} < \frac{1}{f(0)}\]
移项就知道可积了。

48

Threads

771

Posts

110K

Credits

Credits
13880
QQ

Show all posts

 Author| Czhang271828 Posted 2021-5-2 14:13
技巧性很棒,谢谢!

460

Threads

952

Posts

9848

Credits

Credits
9848

Show all posts

青青子衿 Posted 2021-5-5 13:45
Last edited by 青青子衿 2021-5-6 09:08回复 1# Czhang271828
Mark一下
PKU数学分析II第五题
2624624.jpg

Mobile version|Discuz Math Forum

2025-6-5 19:40 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit