Forgot password
 Register account
View 996|Reply 5

[几何] (初二)改编了一个几何题

[Copy link]

412

Threads

1432

Posts

3

Reputation

Show all posts

realnumber posted 2021-5-17 22:07 |Read mode
已知三角形ABC内有一点P,P到A,B,C的距离依次是正的三个定值r,s,t.当三角形ABC面积最大时,求这个面积(用r,s,t表示).




改编自四个点的课本题,打算推广到n个点.不晓得能不能表示

13

Threads

898

Posts

8

Reputation

Show all posts

色k posted 2021-5-17 22:25
P为垂心且在内部时最大

我以前还玩过空间的:forum.php?mod=viewthread&tid=393

412

Threads

1432

Posts

3

Reputation

Show all posts

original poster realnumber posted 2021-5-17 22:35
垂心没问题,可以证的,那平面有简单的表达式吗?

13

Threads

898

Posts

8

Reputation

Show all posts

色k posted 2021-5-17 22:47
回复 3# realnumber

链接里面的推导过程应该可以给你一点启发,我现在爪机有空再说。

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2021-5-18 16:33
首先换个字母,不用 r,s,t,因为 r 容易被认为是内切圆,改成 t,u,v 好了……

因为 `HA=2R\abs{\cos A}` 等,故当 `P` 为垂心且在内部时,有 `t=2R\cos A`, `u=2R\cos B`, `v=2R\cos C`,代入恒等式 `\cos^2A+\cos^2B+\cos^2C+2\cos A\cos B\cos C=1` 中,化简得
\[(t^2+u^2+v^2)R+tuv=4R^3,\quad(1)\]又由面积公式 `S=2R^2\sin A\sin B\sin C=2R^2\sqrt{(1-\cos^2A)(1-\cos^2B)(1-\cos^2C)}`,两边平方后代入那些 `\cos` 化简得
\[16S^2R^2=(4R^2-t^2)(4R^2-u^2)(4R^2-v^2),\quad(2)\]式 (1) (2) 消去 `R`(当然开了挂)化简即得
\[256S^6+16S^4\sum(t^4-10u^2v^2)-8S^2\sum(t^6u^2+t^2u^6-4t^4u^4+2t^2u^2v^4)+\prod(t^2-u^2)^2=0,\]所以一般情况就是关于 `S^2` 的三次方程。

412

Threads

1432

Posts

3

Reputation

Show all posts

original poster realnumber posted 2021-5-18 18:29
en ,用你的那个引理
\[\frac{k}{k+t^2}+\frac{k}{k+u^2}+\frac{k}{k+v^2}=1\]
化简一下也是三次方程

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 14:56 GMT+8

Powered by Discuz!

Processed in 0.012087 seconds, 22 queries