Forgot password?
 Create new account
Author: realnumber

[不等式] a+b=1,求$\frac{8}{a^2}+\frac{1}{b^2}$的最小值

[Copy link]

801

Threads

4888

Posts

310K

Credits

Credits
36170

Show all posts

isee Posted at 2021-11-29 12:07:18
源自知乎提问


题:已知正实数满足 $y^3(5-2x^3)=3$,求 $\frac 2{x^2}+3y^2$ 最小值.



条件化为 $2x^3+\frac 3{y^3}=5,$ 由权方和不等式

\begin{align*} 5=2x^3+\frac 3{y^3}&=\frac 2{\frac 1{x^3}}+\frac 3{y^3}\\[1em] &=\frac {2^{5/2}}{\left(\frac 2{x^2}\right)^{3/2}}+\frac {3^{5/2}}{\left(3y^2\right)^{3/2}}\\[1em] &\geqslant \frac {(2+3)^{5/2}}{\left(\frac 2{x^2}+3y^2\right)^{3/2}}\\[1em] \Rightarrow \ \left(\frac 2{x^2}+3y^2\right)^{3/2}&\geqslant 5^{3/2}\\[1em] \therefore\ \ \frac 2{x^2}+3y^2&\geqslant 5. \end{align*}

取"="时, $\frac {2}{\frac 2{x^2}}=\frac {3}{3y^2},$ 即 $x=y=1.$

801

Threads

4888

Posts

310K

Credits

Credits
36170

Show all posts

isee Posted at 2022-2-5 22:34:37
源自知乎提问,又一个例子,其实用 holder 不等式更快

=======


题:正实数 $a,b$ 满足 $4a+2b=ab,$ 则 $a^2+2b^2$ 的最小值为_______.

权方和不等式,对任意正实数 $a,b,c,d,m>0,$ 有 $\frac {c^{m+1}}{a^m}+\frac {d^{m+1}}{b^m}\geqslant\frac {(c+d)^{m+1}}{(a+b)^m},$ 当且仅当 $\frac ca=\frac db$ 时,取“=”号.

\begin{align*} 4a+2b&=ab\\[1em] \therefore {~} \sqrt 2 &=\frac {2\sqrt 2}a+\frac {4\sqrt 2}b\\[1em] &=\frac {2^{\frac 32}}{(a^2)^\frac 12}+\frac {4^\frac 32}{(2b^2)^\frac 12}\\[1em] &\geqslant \frac {(2+4)^{\frac 32}}{(a^2+2b^2)^\frac 12}\\[1em] \therefore \ 2(a^2+2b^2)&\geqslant 216\\[1em] \Rightarrow a^2+2b^2&\geqslant 108. \end{align*}

取" $=$ "时, $\frac 2{a^2}=\frac 4{2b^2},$ 即 $a=b=6.$

801

Threads

4888

Posts

310K

Credits

Credits
36170

Show all posts

isee Posted at 2022-3-14 10:45:38
源自知乎提问,还有不少精彩解法




:若 $x,y,x\in \mathbb R_+$ ,求证: $\frac x{\sqrt {y+z}}+\frac y{\sqrt {z+x}}+\frac z{\sqrt {x+y}}\geqslant \sqrt{\frac 32(x+y+z)}$ .




还是老规矩发现 $x=y=z$ 取等号,于是考虑凑权方和不等式之类.



熟知 $x^2+y^2+z^2\geqslant xy+yz+zx$,所以 $(x+y+z)^2\geqslant 3(xy+yz+zx)$.

于是 $\frac {x+y+z}{\sqrt{2(xy+yz+zx)}}\geqslant \sqrt{\frac  32},$ 则

\begin{align*} &\quad \frac {x}{\sqrt {y+z}}+\frac y{\sqrt {z+x}}+\frac z{\sqrt {x+y}}\\[1em] &= \frac {x^{\frac 32}}{(x(y+z))^{\frac 12}}+\frac {y^{\frac 32}}{(y(z+x))^{\frac 12}}+\frac {z^{\frac 32}}{(z(x+y))^{\frac 12}}\\[1em]  &\geqslant \frac {(x+y+z)^{\frac 32}}{(2(xy+yz+zx))^{\frac 12}}\\[1em]  &=\frac {(x+y+z)^{\frac 12}}{1}\cdot \frac {x+y+z}{\sqrt {2(xy+yz+zx)}}\\[1em]  &\geqslant \frac {(x+y+z)^{\frac 12}}{1}\cdot\sqrt{\frac  32}\\[1em]  &=\sqrt{\frac 32(x+y+z)}. \end{align*}

700

Threads

110K

Posts

910K

Credits

Credits
94212
QQ

Show all posts

kuing Posted at 2022-3-14 13:36:33
回复 23# isee

这道题我当时看了一眼,首先想到的也是这种权方和,其次是 `x/\sqrt{1-x}` 下凸的,于是可琴生,亦可切线法。
又因可权方和即可赫尔德,且是有理指数,故亦可均值。
但最近懒,没写,没想到那帖变成了大帖……

801

Threads

4888

Posts

310K

Credits

Credits
36170

Show all posts

isee Posted at 2022-3-14 14:15:39
回复 24# kuing


总之你根本不知道哪个是会“火”起来——不过,一般只要有三五不同的写法都是引起围观,这很有点当年论坛的感觉

其次,那些不等式啊,对你实在是太简单的,也就是我这样的半懂不懂的练练手,哈哈哈~~~~

801

Threads

4888

Posts

310K

Credits

Credits
36170

Show all posts

isee Posted at 2022-3-14 14:16:29
回复  isee

这道题我当时看了一眼,首先想到的也是这种权方和,其次是 `x/\sqrt{1-x}` 下凸的,于是可琴 ...
kuing 发表于 2022-3-14 13:36
其实,这就是极好的点评与总结

手机版Mobile version|Leisure Math Forum

2025-4-22 17:18 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list