Forgot password?
 Register account
View 669|Reply 1

代数地看Apollonius问题

[Copy link]

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2021-6-11 19:14 |Read mode
Last edited by hbghlyj 2023-1-30 00:33GroebnerBasis[{(x - x1)^2 + (y - y1)^2 - (r - r1)^2, (x - x2)^2 + (y -y2)^2 - (r - r2)^2, (x - x3)^2 + (y - y3)^2 - (r - r3)^2}, {r, x1, y1, x2, y2, x3, y3, r1, r2, r3}, {x, y}]
Factor[Discriminant[%[[1]],r]]
\[-16 \left(r_1^2-2 r_1 r_2+r_2^2-x_1^2+2 x_1 x_2-x_2^2-y_1^2+2 y_1 y_2-y_2^2\right)\]\[ \left(r_1^2-2 r_1 r_3+r_3^2-x_1^2+2 x_1 x_3-x_3^2-y_1^2+2 y_1 y_3-y_3^2\right) \]\[\left(r_2^2-2 r_2 r_3+r_3^2-x_2^2+2 x_2 x_3-x_3^2-y_2^2+2 y_2 y_3-y_3^2\right)\]\[ (-x_1 y_2+x_1 y_3+x_2 y_1-x_2 y_3-x_3 y_1+x_3 y_2)^2\]
突然想到...Apollonius的作圆与三圆相切的问题从代数上可以转换为平移等价的三个正圆锥相交吧

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2021-6-11 19:30
著名的数学科普书Richard Courant, Herbert Robbins, Ian Stewart - What is mathematics__ an elementary approach to ideas and methods-Oxford University Press第125-126页提到了Apollonius问题的代数解法,并说:in general,消去x,y后所得的关于r的二次方程(很复杂)有一正一负两个实根,这个如何证明呢
吐.png 吐.png
观察r的判别式(在1#),我们要证明,在$|A_1A_2|>|r_1-r_2|,|A_2A_3|>|r_2-r_3|,|A_3A_1|>|r_3-r_1|$这三个不等式中,有0或2个成立.

Mobile version|Discuz Math Forum

2025-5-31 11:05 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit