11.
In[1]:=
U = {6 + 3 a, 2 a, 1 + a}; V = {3 b, 3 + 2 b, -4 - 2 b}; X = {x, y, z};
GroebnerBasis[Cross[U - X, V - X]~Join~{Dot[U - X, {2, 3, 0}]}, {x, y, z}, {a, b}]
Out[1]:=
$\left\{-120+10 x+4 x^2-45 y-9 y^2-84 z\right\}$
12.
In[2]:=
U = {1, a, a}; V = {-1, b, -b}; W = {2 - 3 c, -1 + 4 c, -2 + 5 c}; X = {x, y, z};
GroebnerBasis[Cross[U - X, V - X]~Join~Cross[U - X, W - X], {x, y, z}, {a, b, c}]
Out[2]:=
$\left\{-1+x^2+y^2-z^2\right\}$
13.
In[3]:=
GroebnerBasis[{Dot[Cross[{1, Tan[β], 0}, {x, y, z - c}], Cross[{1, -Tan[β], 0}, {x, y, z + c}]]}, {x, y, z}]
Out[3]:=
$\left\{c^2-y^2-z^2-c^2 \text{Tan}[\beta ]^2+x^2 \text{Tan}[\beta ]^2+z^2 \text{Tan}[\beta]^2\right\}$ |