找回密码
 快速注册
搜索
查看: 734|回复: 21

$A,B$都是n阶方阵,能不能用同一矩阵对角化?

[复制链接]

413

主题

1558

回帖

1万

积分

积分
11498

显示全部楼层

abababa 发表于 2021-6-18 09:30 |阅读模式
给定两个$n$阶实对称半正定矩阵$A,B$,是否存在一个矩阵$P$(可逆或不可逆),使得$P^TAP, P^TBP$都是对角矩阵?

这个问题来源于下面这帖:
kuing.cjhb.site/forum.php?mod=viewthread&tid=6947
那帖里要求A,B都是实对称矩阵,且A是正定的。

对两个都是实对称半正定的矩阵,是否还存在这样的$P$?希望能给出一些详细的证明或反例,有些跳步的地方,以我的水平确实太难读懂了。

48

主题

992

回帖

1万

积分

积分
14981
QQ

显示全部楼层

Czhang271828 发表于 2021-6-18 11:27
回复 1# abababa

根据谱分解,实半正定对称矩阵$A$有对角化$Q^T\Lambda Q$,其中$Q$为正交矩阵,$\Lambda$为对角矩阵。由于$\Lambda$中元素大于等于$0$,可以自然定义$\sqrt\Lambda$。因此$A=R^TR$,其中$R=\sqrt\Lambda Q$。这也是Cholesky分解的结论。更进一步地,不难求得满秩矩阵$S$使得$S^TAS=\mbox{diag}(1,\ldots,1,0,\ldots,0):=I_r$。

设$S^{T}BS$的谱分解为$P^TM P$,其中$P$为正交矩阵。因此

$A=(S^T)^{-1}I_rS^{-1}=(PS^{-1})^TI_r(PS^{-1})$,$B=(PS^{-1})^TM(PS^{-1})$。

413

主题

1558

回帖

1万

积分

积分
11498

显示全部楼层

 楼主| abababa 发表于 2021-6-18 13:02
回复 2# Czhang271828
谢谢,但那个不难求得可逆矩阵$S$,这个具体要怎么做啊?我之前仿照主楼链接里的帖子去证明这个问题,好像也是卡在这里了,然后一直没弄明白,就放了这么长时间。

48

主题

992

回帖

1万

积分

积分
14981
QQ

显示全部楼层

Czhang271828 发表于 2021-6-18 13:16
本帖最后由 Czhang271828 于 2021-6-18 21:35 编辑 回复 3# abababa



$A = \begin{pmatrix}S_1&S_2\\S_3&S_4\end{pmatrix}
\begin{pmatrix}I&O\\O&O\end{pmatrix}
\begin{pmatrix}S_1^T&S_3^T\\S_2^T&S_4^T\end{pmatrix}=
\begin{pmatrix}S_1\\S_3\end{pmatrix}\begin{pmatrix}S_1^T&S_3^T\end{pmatrix}$

那$S_2$和$S_4$是不是随意了?

413

主题

1558

回帖

1万

积分

积分
11498

显示全部楼层

 楼主| abababa 发表于 2021-6-18 14:45
回复 4# Czhang271828

谢谢,比如说
\[正交矩阵Q=\left(
\begin{array}{ccc}
0 & 1 & 0 \\
\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\
-\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\
\end{array}
\right),\Lambda=\left(
\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0 \\
\end{array}
\right)\]
所以
\[R=\sqrt{\Lambda}Q=\left(
\begin{array}{ccc}
0 & 1 & 0 \\
\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\
0 & 0 & 0 \\
\end{array}
\right),A=R^TR=\left(
\begin{array}{ccc}
\frac{1}{2} & 0 & \frac{1}{2} \\
0 & 1 & 0 \\
\frac{1}{2} & 0 & \frac{1}{2} \\
\end{array}
\right)
\]
根据 $\Lambda$的结构,$S_1$应该是一个$2\times 2$的矩阵吧,如果能像4楼那样的分解,乘出来应该是
\[A=\begin{bmatrix}
S_1^2 & S_1S_3\\
S_3S_1 & S_3^2
\end{bmatrix}\]
这样的话,那$S_3$是不是应该等于$\sqrt{\frac{1}{2}}$啊,然后$S_2,S_4$都要怎么算呢?实在没搞明白这个分块,就是那些零的位置,是不是不能随意?

48

主题

992

回帖

1万

积分

积分
14981
QQ

显示全部楼层

Czhang271828 发表于 2021-6-18 14:50
回复 5# abababa

当然可以随意取啊。乘出来的值不是和$S_2$,$S_4$无关吗。$A$的秩是$r$,所以一个$(S_1\quad S_3)$就足以决定$A$了。

413

主题

1558

回帖

1万

积分

积分
11498

显示全部楼层

 楼主| abababa 发表于 2021-6-18 15:07
回复 6# Czhang271828

就是现在按5楼的例子,$S_3$应该是$1\times 1$的矩阵,应该就是$\sqrt{\frac{1}{2}}$吧,然后$S_1$是一个$2\times 2$的矩阵吧,我乘出来是这样的:
\[\begin{pmatrix}S_1&S_2\\S_3&S_4\end{pmatrix}\begin{pmatrix}I&O\\O&O\end{pmatrix}\begin{pmatrix}S_1&S_3\\S_2&S_4\end{pmatrix}=
\begin{pmatrix}
S_1^2 & S_1S_3\\
S_3S_1 & S_3^2
\end{pmatrix}\]

然后$S_1S_3$要怎么乘呢?如果$S_1S_3$是一个$2\times 2$的矩阵,它怎么才能排到整个的矩阵里呢?

48

主题

992

回帖

1万

积分

积分
14981
QQ

显示全部楼层

Czhang271828 发表于 2021-6-18 21:33
回复 7# abababa


啊,加个转置

\[
\begin{pmatrix}S_1&S_2\\S_3&S_4\end{pmatrix}\begin{pmatrix}I&O\\O&O\end{pmatrix}\begin{pmatrix}S_1^T&S_3^T\\S_2^T&S_4^T\end{pmatrix}
\]

四楼处的错误,已改

413

主题

1558

回帖

1万

积分

积分
11498

显示全部楼层

 楼主| abababa 发表于 2021-6-19 12:12
回复 8# Czhang271828

谢谢,就比如之前的例子:
\[\left(
\begin{array}{ccc}
\frac{1}{2} & 0 & \frac{1}{2} \\
0 & 1 & 0 \\
\frac{1}{2} & 0 & \frac{1}{2} \\
\end{array}
\right)=A=\begin{pmatrix}S_1&S_2\\S_3&S_4\end{pmatrix}
\begin{pmatrix}I&O\\O&O\end{pmatrix}
\begin{pmatrix}S_1^T&S_3^T\\S_2^T&S_4^T\end{pmatrix}=\begin{pmatrix}S_1S_1^T&S_1S_3^T\\S_3S_1^T&S_3S_3^T\end{pmatrix}\]
这个$S_1$必须是$2\times 2$的矩阵,$S_3$是$1\times 2$的矩阵,然后我用Mathematica来算:

S1 = {{a, b}, {c, d}}
S3 = {e, f}
S1.Transpose[S1] == {{1/2, 0}, {0, 1}} && S3.S3 == 1/2 &&
S3.Transpose[S1] == {1/2, 0} && S1.S3 == {0, 1/2}

但这个方程无解啊,所以这种分解是真的存在的吗?

我明白了,最后的S1.S3 == {0, 1/2},应该是S1.S3 == {1/2,0}。这样是存在解的。

413

主题

1558

回帖

1万

积分

积分
11498

显示全部楼层

 楼主| abababa 发表于 2021-6-19 15:21
回复 2# Czhang271828

我突然想到,这个半正定矩阵,是不是对应着一个二次型?如果这个二次型是实的,那它的规范型里真的能只有$1$和$0$吗?是不是还需要有$-1$?如果这个二次型是复的,规范型里才会只有$1,0$吧。而那个可逆矩阵$S$实际上就对应着那个非退化的线性变换吧,在实二次型里能变成$\text{diag}(1,\cdots,1,0,\cdots,0)$吗?还是只能变成$\text{diag}(1,\cdots,1,-1,\cdots,-1,0,\cdots,0)$?或者我这个问题本身不对,应该要求是复对称矩阵?

48

主题

992

回帖

1万

积分

积分
14981
QQ

显示全部楼层

Czhang271828 发表于 2021-6-19 15:40
回复 11# abababa

若复数域上的矩阵$A$满足$(\overline A)^T=A$, 则其特征值均为实数, 特征向量两两正交.

特别地, 可以选出一组规范正交的向量为酉矩阵, 使得其对角化$A$.

实对称矩阵为特殊情形.

可以试着证明. 我倾向一类从高到低的证明, 即任意复矩阵$T$, 存在酉矩阵$Q$使得$Q^T TQ$为上三角矩阵. 这个数学归纳法就行了. 然后上面的命题就显然了.

一般地, 称酉对称矩阵$A$在酉对角化后的对角线为"谱", 也就是所有的特征值. 正定矩阵的谱都是严格的正数, 半正定矩阵的谱非负.

413

主题

1558

回帖

1万

积分

积分
11498

显示全部楼层

 楼主| abababa 发表于 2021-6-19 20:44
回复 12# Czhang271828

谢谢,这个半正定的,我发完帖没多久就明白了,因为它半正定,所以规范型里没有$-1$,这样就都能顺下来了。

现在我在考虑这样的问题:如果$A,B$都是半正定的厄米特矩阵,还能不能同时合同对角化呢?

这时其它的都能照搬:$A$对应一个半正定厄米特二次型,存在非退化线性变换$S$使得$A$变为规范型,即$S^HAS=E_r$。如果$S^HBS$仍是厄米特矩阵,就能被酉对角化了,存在酉矩阵$U$使得$S^HBS=U^H\Lambda U$,其中$\Lambda$是对角矩阵。后面就照搬2楼的计算,$A=(US^{-1})^HE_r(US^{-1})$,然后$B=(US^{-1})^H\Lambda (US^{-1})$,这样就完成同时对角化了。关键是$S^HBS$还能不能是厄米特矩阵,这样不限制什么是保证不了的吧?

48

主题

992

回帖

1万

积分

积分
14981
QQ

显示全部楼层

Czhang271828 发表于 2021-6-20 12:50
回复 12# abababa


    由于$B$为Hermit矩阵, $(S^HBS)^H=S^H B^H (S^H)^H=S^HBS$.

413

主题

1558

回帖

1万

积分

积分
11498

显示全部楼层

 楼主| abababa 发表于 2021-6-20 15:13
回复 13# Czhang271828

谢谢,我明白是怎么回事了。是因为厄米特矩阵只能被酉对角化,就是存在酉矩阵$S$使得$S^HAS=\text{diag}(c_1^2,\cdots,c_r^2,0,\cdots,0)=\Delta$,但却不能像复对称矩阵那样,能变成$\text{diag}(1,\cdots,1,0,\cdots,0)=E_r$这样的规范型。

然后确实$S^HBS$仍是厄米特矩阵,还能被酉对角化成$S^HBS=U^H\Lambda U$,这时$B$能合同对角化是没问题的,有$B=(US^{-1})^H\Lambda (US^{-1})$,但$A$要怎么做呢?
\[(US^{-1})^H\Delta (US^{-1})=(S^H)^{-1}(U^H\Delta U)S^{-1}\]
这时$(U^H\Delta U)$不一定还等于$\Delta$了,上式也就不一定能等于$A$了。

所以$A,B$都是厄米特矩阵的时候,是不是还需要加什么条件才同时能酉对角化?

48

主题

992

回帖

1万

积分

积分
14981
QQ

显示全部楼层

Czhang271828 发表于 2021-6-20 15:39
本帖最后由 Czhang271828 于 2021-6-20 15:45 编辑 回复 14# abababa

对一簇相同阶数的酉对称矩阵$\{A_n\}$, 下面三个命题等价:

1. $\{A_n\}$能被同时对角化.
2. $\{A_n\}$有相同的特征向量. (也就是酉矩阵里的向量).
3. $\{A_n\}$中矩阵两两可交换.

413

主题

1558

回帖

1万

积分

积分
11498

显示全部楼层

 楼主| abababa 发表于 2021-6-20 21:36
回复 15# Czhang271828
谢谢,我明白了,实际上不要求$A,B$都是厄米特矩阵,只要它们都是正规矩阵,即$A^HA=AA^H,B^HB=BB^H$,并且可交换,即 $AB=BA$,这样就能同时酉对角化了。我试着证明如下:
因为$A$是正规矩阵,所以存在酉矩阵$U$使得$U^HAU$为对角矩阵,设$\lambda_1,\cdots,\lambda_k$为$A$的互不相同的特征值,重数分别为$n_1,\cdots,n_k$,则
\[U^HAU=\text{diag}(\lambda_1E_{n_1},\cdots,\lambda_kE_{n_k})\]
由于$AB=BA$,所以
\[U^HAUU^HBU=U^HABU=U^HBAU=U^HBUU^HAU\]
令$X=U^HAU, Y=U^HBU$,上式即$XY=YX$,因为$X=\text{diag}(\lambda_1E_{n_1},\cdots,\lambda_kE_{n_k})$且$XY=YX$,将$Y$按$X$的对角块方式分块,直接计算,并注意$\lambda_i$互不相同,因此$Y$的非对角块上的分块必定为零,于是$Y$也是准对角矩阵,每个对角块都与$X$的对角块同型,设$Y=\text{diag}(C_1,\cdots,C_k)$,其中$C_i$是$n_i$阶方阵。因为$B$是正规矩阵,所以$B^HB=BB^H$,所以
\[Y^HY=(U^HBU)^H(U^HBU)=U^HB^HUU^HBU=U^HB^HBU=U^HBB^HU=(U^HBU)(U^HB^HU)=YY^H\]
也就是对$Y$的每个对角块$C_i$都有$C_i^HC_i=C_iC_i^H$,因此每个$C_i$都是正规矩阵,于是每个$C_i$都能被酉对角化,即存在酉矩阵$V_i$使得$V_i^HC_iV_i=\text{diag}(c_{i1},\cdots,c_{in_i})$,令$V=\text{diag}(V_1,\cdots,V_k)$,则$V$是酉矩阵,再令$P=UV$,则$P$仍为酉矩阵,并且有

\begin{align*}
P^HAP &= (UV)^HA(UV)=V^H(U^HAU)V\\
&= \text{diag}(V_1,\cdots,V_k)^H\text{diag}(\lambda_1E_{n_1},\cdots,\lambda_kE_{n_k})\text{diag}(V_1,\cdots,V_k)\\
&= \text{diag}(\lambda_1E_{n_1},\cdots,\lambda_kE_{n_k})
\end{align*}
\begin{align*}
P^HBP &= (UV)^HB(UV)=V^H(U^HBU)V=V^HYV\\
&= \text{diag}(V_1,\cdots,V_k)^H\text{diag}(C_1,\cdots,C_k)\text{diag}(V_1,\cdots,V_k)\\
&= \text{diag}(c_{11},\cdots,c_{1n_1},\cdots,c_{k1},\cdots,c_{kn_k})
\end{align*}

471

主题

945

回帖

9837

积分

积分
9837

显示全部楼层

青青子衿 发表于 2021-7-18 21:42
3562562565.png

点评

又见Horn & Johnson 1985, pp. 51–53  发表于 2023-5-27 05:59

3149

主题

8386

回帖

6万

积分

$\style{scale:11;fill:#eff}꩜$

积分
65391
QQ

显示全部楼层

hbghlyj 发表于 2023-1-6 03:45


simultaneous commutativity of operators(Keith Conrad) PDF
In this note we work with linear operators on finite-dimensional complex vector spaces. Any such operator has an eigenvector, by the fundamental theorem of algebra. A linear operator is called diagonalizable if it has a basis of eigenvectors: there is a basis in which the matrix representation of the operator is a diagonal matrix. We are interested in conditions that make a finite set of linear operators simultaneously diagonalizable: there is a basis in which the matrix representation of each operator is diagonal.

Example 1. The matrices $A=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$ and $B=\left(\begin{array}{c}1&2 \\ 2&1\end{array}\right)$ acting on $\mathbf{C}^{2}$ are each diagonalizable, but they are not simultaneously diagonalizable: the eigenvectors of $A$ are scalar multiples of $\left(\begin{array}{l}i \\ 1\end{array}\right)$ and $\left(\begin{array}{c}-i \\ 1\end{array}\right)$ while the eigenvectors of $B$ are scalar multiples of $\left(\begin{array}{l}1 \\ 1\end{array}\right)$ and $\left(\begin{array}{c}-1 \\ 1\end{array}\right)$.

Example 2. The matrices$$
A=\left(\begin{array}{rrr}
7 & -10 & 5 \\
4 & -5 & 3 \\
-1 & 3 & 0
\end{array}\right) \text { and } B=\left(\begin{array}{rrr}
8 & -11 & 6 \\
5 & -6 & 4 \\
0 & 2 & 1
\end{array}\right)$$acting on $\mathbf{C}^{3}$ are simultaneously diagonalizable with common eigenbasis$$
\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right),\left(\begin{array}{c}
-3 / 2+i / 2 \\
-1 / 2+i / 2 \\
1
\end{array}\right),\left(\begin{array}{c}
-3 / 2-i / 2 \\
-1 / 2-i / 2 \\
1
\end{array}\right) .
$$For linear operators to be simultaneously diagonalizable, they at least have to be individually diagonalizable, but more is needed (see Example 1). A further necessary condition is that the operators commute, since diagonal matrices commute. Check the matrices in Example 1 do not commute while those in Example 2 do commute. The following theorem shows that commuting linear operators already have something in common.

Theorem 3. If $A_{1}, \ldots, A_{r}$ are commuting linear operators on a finite-dimensional $\mathbf{C}$-vector space $V$ then they have a common eigenvector in $V$.

Proof. We induct on $r$, the result being clear if $r=1$ since we work over the complex numbers: every linear operator on a finite-dimensional $\bf C$-vector space has an eigenvector.

Now assume $r \geq 2$. Let the last operator $A_{r}$ have an eigenvalue $\lambda \in \mathbf{C}$ and let$$E_{\lambda}=\left\{v \in V: A_{r} v=\lambda v\right\}$$be the $\lambda$-eigenspace for $A_{r} .$ For $v \in E_{\lambda}, A_{r}\left(A_{i} v\right)=A_{i}\left(A_{r} v\right)=A_{i}(\lambda v)=\lambda\left(A_{i} v\right)$, so $A_{i} v \in E_{\lambda}$. Thus each $A_{i}$ restricts to a linear operator on the subspace $E_{\lambda}$.

The linear operators $\left.A_{1}\right|_{E_{\lambda}}, \ldots,\left.A_{r-1}\right|_{E_{\lambda}}$ commute since the $A_{i}$ 's commute as operators on the larger space $V$. There are $r-1$ of these operators, so by induction on $r$ (while quantifying over all finite-dimensional $\bf C$-vector spaces) these operators have a common eigenvector in $E_{\lambda}$. That vector is also an eigenvector of $A_{r}$ by the definition of $E_{\lambda}$. We're done.

A common eigenvector for $A_{1}, \ldots, A_{r}$ need not have the same eigenvalue for all the operators; the first eigenvector in Example 2 has eigenvalue 2 for $A$ and 3 for $B$.

Lemma 4. If $A: V \rightarrow V$ is a diagonalizable linear operator and $W$ is an $A$-stable subspace of $V$ then the restriction $\left.A\right|_{W}: W \rightarrow W$ is also diagonalizable.

Proof. We use a variation on the answer by Zorn. Letting $\lambda_{1}, \ldots, \lambda_{r}$ be the distinct eigenvalues of $A$ acting on $V$, we have $V=\bigoplus_{i=1}^{r} E_{\lambda_{i}}$, where $E_{\lambda_{i}}$ is the $\lambda_{i}$-eigenspace of $A$. For $w \in W$, write $w=v_{1}+\cdots+v_{r}$ where $v_{i} \in E_{\lambda_{i}}$. We'll prove each $v_{i}$ is in $W$. Then $W=\bigoplus_{i=1}^{r}\left(E_{\lambda_{i}} \cap W\right)$, so $\left.A\right|_{W}$ is diagonalizable.

Since $W$ is $A$-stable, $A^{k}(w) \in W$ for all $k \geq 0$. Also $A^{k} w=\lambda_{1}^{k} v_{1}+\cdots+\lambda_{r}^{k} v_{r}$. Taking $k=0,1, \ldots, r-1$, we have the following equation in $V^{r}$ :$$\left(\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
\lambda_{1} & \lambda_{2} & \cdots & \lambda_{r} \\
\vdots & \vdots & \ddots & \vdots \\
\lambda_{1}^{r-1} & \lambda_{2}^{r-1} & \cdots & \lambda_{r}^{r-1}
\end{array}\right)\left(\begin{array}{c}
v_{1} \\
v_{2} \\
\vdots \\
v_{r}
\end{array}\right)=\left(\begin{array}{c}
w \\
A w \\
\vdots \\
A^{r-1} w
\end{array}\right) .
$$The vector on the right is in $W^{r}$ (a subspace of $V^{r}$ ) and the $r \times r$ matrix on the left is invertible (Vandermonde matrix with distinct $\lambda_{i}$ ). Therefore the vector on the left is in $W^{r}$, so each $v_{i}$ is in $W$.

Theorem 5. If $A_{1}, \ldots, A_{r}$ are commuting linear operators on $V$ and each $A_{i}$ is diagonalizable then they are simultaneously diagonalizable, i.e., there is a basis of $V$ consisting of simultaneous eigenvectors for the $A_{i}$.

Proof. We won't use Theorem 3, but the proof will be essentially the same type of argument as in the proof of Theorem 3; the stronger hypothesis (commutativity and individual diagonalizability) will lead to a stronger conclusion (a basis of simultaneous eigenvectors, not just one simultaneous eigenvector).

The result is clear if $r=1$, so assume $r \geq 2$. Since the last operator $A_{r}$ is diagonalizable on $V, V$ is the direct sum of the eigenspaces for $A_{r}$. Let $\lambda$ be an eigenvalue for $A_{r}$ and $E_{\lambda}$ be the $\lambda$-eigenspace of $A_{r}$ in $V$. As in the proof of Theorem 3, since each $A_{i}$ commutes with $A_{r}$ we have $A_{i}\left(E_{\lambda}\right) \subset E_{\lambda}$. Thus each $A_{i}$ restricts to a linear operator on the subspace $E_{\lambda}$ and the linear operators $\left.A_{1}\right|_{E_{\lambda}}, \ldots,\left.A_{r-1}\right|_{E_{\lambda}}$ commute since $A_{1}, \ldots, A_{r-1}$ commute as operators on $V$.

By Lemma 4 , the restrictions $\left.A_{1}\right|_{E_{\lambda}}, \ldots,\left.A_{r-1}\right|_{E_{\lambda}}$ are each diagonalizable on $E_{\lambda}$. Since the number of these operators is less than $r$, by induction on $r$ there is a basis for $E_{\lambda}$ consisting of simultaneous eigenvectorsThis choice of basis for $E_{\lambda}$ is not made by $A_{r}$, but by the other operators together. for $\left.A_{1}\right|_{E_{\lambda}}, \ldots,\left.A_{r-1}\right|_{E_{\lambda}}.$ The elements of this basis for $E_{\lambda}$ are eigenvectors for $A_r|_{E_{\lambda}}$ as well, since all nonzero vectors in $E_{\lambda}$ are eigenvectors for $A_{r}$. Thus $\left.A_{1}\right|_{E_{2}}, \ldots,\left.A_{r-1}\right|_{E_{1}},\left.A_{r}\right|_{E_{\lambda}}$ are all diagonalizable. The vector space $V$ is the direct sum of the eigenspaces $E_{\lambda}$ of $A_{r}$, so stringing together simultaneous eigenbases of $\left.A_{1}\right|_{E_{\lambda}}, \ldots,\left.A_{r-1}\right|_{E_{\lambda}},\left.A_{r}\right|_{E_{\lambda}}$ as $\lambda$ runs over the eigenvalues of $A_{r}$ gives a simultaneous eigenbasis of $V$ for all the $A_{1}, \ldots, A_{r}$.

Remark 6. Theorem 5 is not saying commuting operators diagonalize! It says commuting diagonalizable operators simultaneously diagonalize. For example, the matrices $\left(\begin{array}{ll}1 & a \\ 0 & 1\end{array}\right)$ for all $a$ commute with each other, but none of them are diagonalizable when $a \neq 0$.

Because we are dealing with operators on finite-dimensional spaces, Theorem 5 extends to a possibly infinite number of commuting operators, as follows.

Corollary 7. Let $\left\{A_{i}\right\}$ be a set of commuting linear operators on a finite-dimensional $\bf C$-vector space $V$. If each $A_{i}$ is diagonalizable on $V$ then they are simultaneously diagonalizable.

Proof. Let $U$ be the subspace of $\operatorname{End}_{F}(V)$ spanned by the operators $A_{i}$ 's. Since $\operatorname{End}_{F}(V)$ is finite-dimensional, its subspace $U$ is finite-dimensional, so $U$ is spanned by a finite number of $A_{i}$ 's, say $A_{i_{1}}, \ldots, A_{i_{r}}$. By Theorem 5, there is a common eigenbasis of $V$ for $A_{i_{1}}, \ldots, A_{i_{r}}$. A common eigenbasis for linear operators is also an eigenbasis for any linear combination of the operators, so this common eigenbasis of $A_{i_{1}}, \ldots, A_{i_{r}}$ diagonalizes every element of $U$, and in particular diagonalizes each $A_{i}$.

Corollary 7 is important in number theory, where it implies the existence of eigenforms for Hecke operators.

3149

主题

8386

回帖

6万

积分

$\style{scale:11;fill:#eff}꩜$

积分
65391
QQ

显示全部楼层

hbghlyj 发表于 2023-5-27 05:11
Math217 2011 proofs10-sol.pdf
Problem 10.1. Suppose that $A$ and $B$ are $n \times n$ matrices that commute (that is, $A B=B A$) and suppose that $B$ has $n$ distinct eigenvalues.
(a) Show that if $B \mathbf{v}=\lambda \mathbf{v}$ then $B A \mathbf{v}=\lambda A \mathbf{v}$.
Proof. This follows from the fact that $A B=B A$. Indeed,
$$
B A \mathbf{v}=A B \mathbf{v}=A(\lambda \mathbf{v})=\lambda A \mathbf{v}
$$
since scalar multiplication commutes with matrix multiplication.

(b) Show that every eigenvector for $B$ is also an eigenvector for $A$.
Proof. Suppose $\mathbf{v}$ is an eigenvector of $B$ with eigenvalue $\lambda$. By part (a), we have $B A \mathbf{v}=\lambda A \mathbf{v}$. So either $A \mathbf{v}=\mathbf{0}$ or $A \mathbf{v}$ is also an eigenvector of $B$ with eigenvalue $\lambda$. Since $B$ has $n$ distinct eigenvalues, they all have multiplicity 1 which means that all of the eigenspaces of $B$ are one-dimensional (see Theorem 7(b) in Section 5.3). Since $\mathbf{v}$ and $A \mathbf{v}$ both lie in the one-dimensional eigenspace of $B$ corresponding to the eigenvalue $\lambda$, $\mathbf{v}$ and $A \mathbf{v}$ must be linearly dependent. Since $\mathbf{v} \neq \mathbf{0}$, this means that $A \mathbf{v}=\mu \mathbf{v}$ for some scalar $\mu$. Therefore, $\mathbf{v}$ is an eigenvector of $A$ corresponding to the eigenvalue $\mu$.

(c) Show that the matrix $A$ is diagonalizable.
Proof. Since $B$ has $n$-distinct eigenvalues, we know that $B$ is diagonalizable by Theorem 6 of Section 5.3. Therefore $B$ has $n$ linearly independent eigenvectors $\mathbf{v}_1, \ldots, \mathbf{v}_n$ by Theorem 5 of Section 5.3. By part (b), the vectors $\mathrm{v}_1, \ldots, \mathbf{v}_n$ are also eigenvectors of $A$. Therefore, $A$ has $n$ linearly independent eigenvectors, which means that $A$ is diagonalizable by Theorem 5 of Section 5.3.

(d) Show that the matrix $A B$ is diagonalizable.
Proof. By the solution of part (c) and Theorem 5 of Section 5.3, we have
$$
A=P D P^{-1}, \quad B=P E P^{-1}
$$
where $D$ and $E$ are diagonal matrices and
$$
P=\left[\begin{array}{lll}
\mathbf{v}_1 & \cdots & \mathbf{v}_n
\end{array}\right]
$$
Note that we get the same matrix $P$ for $A$ and $B$ since $\mathbf{v}_1, \ldots, \mathbf{v}_n$ are eigenvectors of both $A$ and $B$. However, the eigenvalues corresponding to these eigenvectors may be different for $A$ and $B$ so we get different diagonal matrices $D$ and $E$.
From this, we see that
$$
A B=P D P^{-1} P E P^{-1}=P D E P^{-1},
$$
which shows that $A B$ is diagonalizable since $D E$ is a diagonal matrix.

3149

主题

8386

回帖

6万

积分

$\style{scale:11;fill:#eff}꩜$

积分
65391
QQ

显示全部楼层

hbghlyj 发表于 2023-5-27 05:44
Why does a diagonalization of a matrix B with the basis of a commuting matrix A give a block diagonal matrix?
Prove that commuting matrices are simultaneously diagonalizable, provided that one of the matrices has no multiple eigenvalues.
Two $n\times n$ matrices $A, B$ are said to be *simultaneously diagonalizable* if there is a nonsingular matrix $S$ such that both $S^{-1}AS$ and $S^{-1}BS$ are diagonal matrices.

a) Show that simultaneously diagonalizable matrices commute: $AB = BA$.

b) Prove that the converse is valid, provided that one of the matrices has no multiple eigenvalues.
Is every pair of commuting matrices simultaneously diagonalizable?
b) Now, if we have two commuting, diagonalizable matrices, then each eigenspace of $B$ is not only invariant under $B$ itself, but also under $A$. This is what we mean by preserving each other's eigenspaces. To see this, let $\mathbf{v}$ be an eigenvector of $B$ under eigenvalue $\lambda$. Then
$$B(A\mathbf{v}) = A(B\mathbf{v}) = \lambda A\mathbf{v}$$
so that $A\mathbf{v}$ is again an eigenvector of $B$ under eigenvalue $\lambda$. In our new language, this means that the eigenspace $E_\lambda$ of $B$ is invariant under $A$. This means it makes sense to look at the restriction of $A$ to $E_\lambda$.

Now consider the restriction of $A$ to $E_\lambda$. If all the eigenvalues of $B$ are simple (multiplicity one) then that means each eigenspace of $B$ is one dimensional. We have therefore restricted $A:\ E_\lambda \rightarrow E_\lambda$ to a mapping on a one-dimensional vector space. But this means that $A$ must take each vector of $E_\lambda$ to a scalar multiple of itself. You can check that this necessarily implies that $E_\lambda$ is also an eigenspace of $A$. Therefore, for any eigenbasis of $B$ that we take, the corresponding vectors also form an eigenbasis of $A$. This means that the two matrices are simultaneously diagonalizable; they share a common eigenbasis.

The general case is a bit more involved in that the restrictions to the invariant subspaces are more complex (they're no longer one-dimensional), but the ideas are identical.

手机版|悠闲数学娱乐论坛(第3版)

GMT+8, 2025-3-4 11:55

Powered by Discuz!

× 快速回复 返回顶部 返回列表