|
$x=1,2,3$ 的情况容易验证。
若 $x\geq4$,由 $x^y-y^x>0$ 知 $x<y\Longrightarrow x\leq y-1$
下证:$$x^y-y^x>2y^3$$
令
$$
\begin{align*}
f(y)&=x^y-y^x-2y^3\\
f'(y)&=\ln x\cdot x^y-xy^{x-1}-6y^2\\
&=(\ln x\cdot y-x)y^{x-1}-6y^2\\
&\geq(\ln x\cdot y-x)y^3-6y^2\\
&=\left(\ln x\cdot y-x-\frac6y\right)y^3\\
&>\left(1.2y-(y-1)-\frac6y\right)y^3\\
&>0
\end{align*}
$$
因此$$
\begin{align*}
f(y)&\geq f(x+1)\\
&=x^{x+1}-(x+1)^x-2(x+1)^3\\
&\geq x^{x+1}-(x+1)^x-\frac x2\cdot\left(\frac54x\right)^3\\
&>x^{x+1}-(x+1)^x-x^4\\
&=x^x\left[x-\left(1+\frac1x\right)^x-x^{4-x}\right]\\
&>x^x\left(4-3-1\right)\\
&=0
\end{align*}
$$
所以 $$x^y-y^x>2y^3>x y(x+y)-2$$
此时无解.
PS:写得比较粗糙,因为关键在于对数量级的估计,所以只是随手放缩了一下 |
|