|
original poster
isee
posted 2021-8-12 16:46
为方便讨论,不妨设`0<x_1<x_2`,则题设有
\[2x_1-\cos x_1=m(-4+\ln x_1)-n,\]
\[2x_2-\cos x_2=m(-4+\ln x_2)-n,\]
两式相减
\[2(x_1-x_2)-(\cos x_1-\cos x_2)=m(\ln x_1-\ln x_2)\]
利用此帖中的大小关系,即`\cos x_1-\cos x_2>x_1-x_2`,从而\[m(\ln x_1-\ln x_2)<2(x_1-x_2)-(x_1-x_2)=x_1-x_2,\]
\[m>\frac {x_1-x_2}{\ln x_1-\ln x_2}>\sqrt {x_1x_2},\]
证毕. |
|