Forgot password?
 Register account
View 430|Reply 2

[函数] 含有三角函数中的两零点`x_1x_2<m^2`

[Copy link]

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

isee Posted 2021-8-12 01:21 |Read mode
已知函数`f(x)=2x-\cos x+m(4-\ln x)+n`,`m,n`为已知实常数,若`f(x_1)=f(x_2)=0`且`x_1\ne x_2`,求证:`x_1x_2<m^2`.

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

 Author| isee Posted 2021-8-12 16:46
为方便讨论,不妨设`0<x_1<x_2`,则题设有
\[2x_1-\cos x_1=m(-4+\ln x_1)-n,\]
\[2x_2-\cos x_2=m(-4+\ln x_2)-n,\]
两式相减
\[2(x_1-x_2)-(\cos x_1-\cos x_2)=m(\ln x_1-\ln x_2)\]

利用此帖中的大小关系,即`\cos x_1-\cos x_2>x_1-x_2`,从而\[m(\ln x_1-\ln x_2)<2(x_1-x_2)-(x_1-x_2)=x_1-x_2,\]
\[m>\frac {x_1-x_2}{\ln x_1-\ln x_2}>\sqrt {x_1x_2},\]
证毕.

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

 Author| isee Posted 2021-9-4 13:40
类似的:forum.php?mod=viewthread&tid=6564,不过,不是极值点偏移,是假偏

Mobile version|Discuz Math Forum

2025-5-31 11:23 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit