|
Last edited by isee 2021-8-24 00:06已知定义在\(\mathrm{R}\)上的偶函数\(f\left( x \right)\)满足$f\left( 1+x \right)+f\left( 1-x \right)=0$且当\(0\leqslant x\leqslant 1\)时,$f\left( x \right)=\log_3\left( a-x \right)$.若对于任意$x\in \left[ -1,0 \right]$,都有$f\left( x^2-tx-\frac 13 \right)\geqslant 1-\log_35$,则实数\(t\)的取值范围为_`-7/3\leqslant t\leqslant 1`__. |
|