Forgot password?
 Register account
View 281|Reply 0

$f(x)|g_1(x)\cdots g_n(x)$,则$f(x)$至少有因子$g_i(x),g_j(x)$

[Copy link]

411

Threads

1634

Posts

14

Reputation

Show all posts

abababa posted 2021-8-25 12:25 |Read mode
$f(x)\mid g_1(x)\cdots g_n(x)$,对每个$k=1,2,\cdots,n$都有$g_k(x)$都不可约,且$f(x)\nmid g_k(x)$,则$f(x)$至少有两个不同的因子$g_i(x),g_j(x)$,其中$i,j$是$1$到$n$的整数。

这个感觉是对的,比如$f(x)\mid (x-1)(x-2)$,但$f(x)\nmid (x-1),(x-2)$,那$f(x)$只能是等于$(x-1)(x-2)$。但要怎么证明它呢?

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | 快速注册

$\LaTeX$ formula tutorial

Mobile version

2025-6-8 06:59 GMT+8

Powered by Discuz!

Processed in 0.022692 second(s), 21 queries

× Quick Reply To Top Edit