Forgot password?
 Register account
View 515|Reply 2

[几何] 一眼看尽点到直线距离的最大值——错题

[Copy link]

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

isee Posted 2021-9-19 20:18 |Read mode
Last edited by isee 2021-11-14 08:41已知`a,b,c`成公差非零的等差数列,则点`P(2,-1)`到直线`ax+by+c=0`的最大值为__$\sqrt 2$__

9

Threads

38

Posts

924

Credits

Credits
924

Show all posts

player1703 Posted 2021-11-14 05:58
Last edited by player1703 2021-11-14 06:39forum.php?mod=viewthread&tid=8277&extra=page=1
和这题是一起的吧, 这其实是道错题最大值取不到只有最小上界. 取最大值时候正好公差$d=0$. 可能是出题者疏忽了改成而公差可以为零但是公差为零时$a\ne 0$(也就是要避免$a,b,c$同时为$0$)就没问题了.
还是用直线系: $ax + (a + d)y + a + 2d = 0$ 既然$d\ne 0$也就是 $y + 2 + \frac{a}{d}(x + y + 1)= 0$ 所以是过$A(1, -2)$的直线系当直线垂直于$AP$时距离最大就是$AP=\sqrt2$. 但是直线系不包括$x+y+1=0$而$\vv{AP}=(1,1)$正好垂直于$x+y+1=0$, 所以最大值$\sqrt2$取不到只能无限趋近(当$\frac{a}{d} \to\infty$).
如果按我改的再讨论一下$d=0$即可此时直线方程$ax + ay + a =0$因为$a\ne 0$也就是$x + y + 1 = 0$到$P$点距离为$\sqrt2$正好是最大值

Rate

Number of participants 1威望 +1 Collapse Reason
isee + 1

View Rating Log

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

 Author| isee Posted 2021-11-14 08:43
回复 2# player1703

其实应该是首项不为零,哈哈哈,我是“抄”错了,正好,反正有此类的,(主楼)就不改了

Mobile version|Discuz Math Forum

2025-5-31 11:18 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit