Forgot password?
 Register account
View 583|Reply 5

[不等式] 两正实数满足 $xy=\frac {x-y}{x+3y}$ 求 $y$ 的最大值

[Copy link]

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

isee Posted 2021-9-28 20:27 |Read mode
B站上看到的,标题主体是基本不等式综合题,小难

题:两正实数$x,y$满足$xy=\frac {x-y}{x+3y}$则$y$的最大值为__1/3__

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2021-9-28 20:53
换元均值:
\[x=(1+t)y, t>0, (1+t)y^2=\frac t{t+4}, y^2=\frac t{(t+1)(t+4)}=\frac t{t^2+4+5t}\leqslant \frac t{4t+5t}=\frac 19.\]
换一种写法:
\[y^2=\frac {y(x-y)}{x(x+3y)}=\frac {y(x-y)}{(y+x-y)(x-y+4y)}\leqslant \frac {y(x-y)}{\left( {\sqrt {y(x-y)}+\sqrt {(x-y)4y}} \right)^2}=\frac 1{3^2}.\]

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

 Author| isee Posted 2021-9-28 21:50
回复 2# kuing


    我就知道你肯定优先齐次设比,哈哈哈~我还是判别式,两正根,哈哈哈~~

    不过,t+1 倍算是打破我的认识了

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

 Author| isee Posted 2021-9-28 22:09
针对此题的解法,与微分方程似的,两变量分开$$x+3y=\frac 1y-\frac 1x\iff 3y+\frac 1y=x+\frac 1x\geqslant 2,\cdots $$

46

Threads

323

Posts

2834

Credits

Credits
2834

Show all posts

业余的业余 Posted 2021-10-2 23:26
Last edited by 业余的业余 2021-10-2 23:41由题设有: $x^2+(3y-\frac1y)x+1=0$
记此关于 $x$ 的方程的两根为 $x_1, x_2$, 由韦达定理,有\begin{cases}
x_1x_2=1,\\
x_1+x_2=\frac1y-3y\end{cases}
于是 $\frac 1y-3y\ge2$ 显然取等时 $y$ 取得最大值。容易知道这个最大值是 $\frac13$
-------------
补:”显然“ 可能不那么可靠。

方程 $\frac 1y-3y=c, (c\ge2)$ 的唯一正根为 $\dfrac{\sqrt{c^2+12}-c}6$. 而

$f(x)=\sqrt{x^2+12}-x=\dfrac{12}{\sqrt{x^2+12}+x} (x>0)$ 显然是减函数。于是前文的"显然", 显然成立。

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2021-10-10 14:06
无意中发现这帖:forum.php?mod=viewthread&tid=4968

Mobile version|Discuz Math Forum

2025-5-31 10:46 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit