Forgot password?
 Create new account
View 624|Reply 13

分数指数幂求极限结果不同[现学现用问题]——有点意思

[Copy link]

801

Threads

4889

Posts

310K

Credits

Credits
36169

Show all posts

isee Posted at 2021-10-12 20:36:18 |Read mode
Last edited by isee at 2021-10-12 21:29:00由洛必达法则可知$$\lim _{x \to -8}\frac {\sqrt{1-x}-3}{2+\sqrt[3]{x}}=-\frac 32\lim _{x \to -8}\frac {(1-x)^{-1/2}}{x^{-2/3}}=-2.$$


Mathematica  中代码   Limit[((1 - x)^(1/2) - 3)/(2 + x^(1/3)), x -> -8]   输出结果为 0,这明显有误,但哪里有问题?






现搜索了下,Limit[(Sqrt[1 - x] - 3)/(2 + CubeRoot[x]), x -> -8]  输出正确 -2

这咋回事儿?

701

Threads

110K

Posts

910K

Credits

Credits
94172
QQ

Show all posts

kuing Posted at 2021-10-12 20:55:40
改成 Limit[((1 - x)^(1/2) - 3)/(2 - (-x)^(1/3)), x -> -8] 即可

Rate

Number of participants 1威望 +1 Collapse Reason
isee + 1

View Rating Log

801

Threads

4889

Posts

310K

Credits

Credits
36169

Show all posts

 Author| isee Posted at 2021-10-12 20:59:12
回复 2# kuing


   Mathematica 中实数时,$x^{\alpha},\alpha\in ,\mathbf R$,要求$x>0$?

701

Threads

110K

Posts

910K

Credits

Credits
94172
QQ

Show all posts

kuing Posted at 2021-10-12 21:02:25
大概是因为 负数 的分数次幂,在 mma 里的规则和我们平常不同。
在 mma 里 (-1)^(1/3) = `\frac12+\frac{\sqrt3}2i`。

801

Threads

4889

Posts

310K

Credits

Credits
36169

Show all posts

 Author| isee Posted at 2021-10-12 21:04:50
回复 5# kuing


   还真是当成复数算,涨知识了

701

Threads

110K

Posts

910K

Credits

Credits
94172
QQ

Show all posts

kuing Posted at 2021-10-12 21:07:36
(-1)^(2/3) 为 `-\frac12+\frac{\sqrt3}2i`。
Solve[x^3 == -1] 得 {{x -> -1}, {x -> (-1)^(1/3)}, {x -> -(-1)^(2/3)}}

801

Threads

4889

Posts

310K

Credits

Credits
36169

Show all posts

 Author| isee Posted at 2021-10-12 21:17:22
回复 7# kuing


    估计也是 FAQ 了吧,第一次见,有意思

701

Threads

110K

Posts

910K

Credits

Credits
94172
QQ

Show all posts

kuing Posted at 2021-10-12 21:26:11
`-1=\exp (i\pi )`,于是
\begin{align*}
(-1)^{1/3}&=\exp \left( {i\frac \pi 3} \right)=\cos \frac \pi 3+i\sin \frac \pi 3=\frac 12+\frac {\sqrt 3}2i,\\
(-1)^{2/3}&=\exp \left( {i\frac {2\pi }3} \right)=\cos \frac {2\pi }3+i\sin \frac {2\pi }3=-\frac 12+\frac {\sqrt 3}2i,
\end{align*}估计是这样的意思吧……

Rate

Number of participants 1威望 +1 Collapse Reason
isee + 1

View Rating Log

801

Threads

4889

Posts

310K

Credits

Credits
36169

Show all posts

 Author| isee Posted at 2021-10-12 21:27:50
回复 9# kuing

应该是的,这样就与高等数学中统一了.

包括 GGB, 但凡遇到或极限,或积分等分析里等等公式,都要小心谨慎.

701

Threads

110K

Posts

910K

Credits

Credits
94172
QQ

Show all posts

kuing Posted at 2021-10-12 21:49:26

418

Threads

1628

Posts

110K

Credits

Credits
11891

Show all posts

abababa Posted at 2021-10-13 08:24:30
是的,负数做分数次方的时候和平时的立方根之类的不一样:
(-8)^(1/3)==CubeRoot[-8]
显示False

123

Threads

463

Posts

3299

Credits

Credits
3299

Show all posts

TSC999 Posted at 2021-11-20 17:03:38
无论实数或虚数,它的立方根都有三个值。平常写出来的那个应该算是 “主值”,但是目前并没有这个规定。没有规定就容易引发误解,以为 -8 的立方根的 “主值” 就是 -2。其实不然,对于指数函数 z^c,当 c 是分数时,就是开方运算。无论底数 z 是正还是负,都是按照 z^c = e^(c Log[z]) 计算的,计算结果就是它的 “主值”。按照这个 “主值” 定义, -3 的立方根的 “主值” 等于 1+ i 1.73205, 而不等于 -2。

3147

Threads

8493

Posts

610K

Credits

Credits
66163
QQ

Show all posts

hbghlyj Posted at 2022-12-31 02:43:18
CubeRoot
维基词典principal root
(mathematics) A complex number which, when raised to the power of n, yields the radicand of its nth degree radical, and which has the greatest real part among all such numbers, and positive imaginary part in case of equality of the real parts.
  • The principal square root of $4$ is $2$.
  • The principal 3rd root of $-8$ is $1 + i\sqrt3$, and the real root is $-2$.
  • The principal 4th root of $16$ is $2$.

Translations: Chinese: 主根

3147

Threads

8493

Posts

610K

Credits

Credits
66163
QQ

Show all posts

hbghlyj Posted at 2022-12-31 02:55:12
CubeRoot[a]CubeRoot[b]==CubeRoot[a b]
对于任意a,b∈Reals成立
a^(1/3)b^(1/3)==(a b)^(1/3)不成立
例如
$(-1)^{1/3}(-1)^{1/3}=(-1)^{2/3}≠(-1)^{1/3}$
Resolve[ForAll[{a, b}, CubeRoot[a] CubeRoot[b] == CubeRoot[a b]], Reals]
输出True
辐角主值$\arg z$的值域是$(-π,π]$
所以$f(z)=z^{1/3}$的值域是$\{0\}\cup\{z:\arg z∈(-\fracπ3,\fracπ3]\}$
\[(a b)^{1/3}=\begin{cases}a^{1/3}b^{1/3}&\arg a+\arg b∈(-π,π]\\
e^{2πi/3}a^{1/3}b^{1/3}&\arg a+\arg b∈(-2π,-π]\\
e^{-2πi/3}a^{1/3}b^{1/3}&\arg a+\arg b∈(π,2π]\\
\end{cases}\]
如果$\arg a,\arg b$在$(-π,π]$均匀分布, 则$\arg a+\arg b$的概率密度函数
\[
f_X(x)= \led
\frac{1}{2 \pi }+\frac{x}{4 \pi ^2}&& -2π\le x \le 0\\
\frac{1}{2 \pi }-\frac{x}{4 \pi ^2}&& 0\le x \le 2π
\endled
\]
$a^{1/3}b^{1/3}=(a b)^{1/3}$成立的概率是
\[\int_{-π}^πf_X(x)\,dx=\frac34\]

手机版Mobile version|Leisure Math Forum

2025-4-20 22:16 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list