Forgot password?
 Register account
View 628|Reply 4

[几何] 如何看待这道“初中几何”

[Copy link]

76

Threads

34

Posts

914

Credits

Credits
914

Show all posts

大佬最帅 Posted 2021-10-18 19:03 |Read mode
mmexport1634554869998.jpg
用画图软件解决的,有啥正规方法

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

isee Posted 2021-10-18 21:06
瞬间想起这个
forum.php?mod=viewthread&tid=4149
爆算总是可以的

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

isee Posted 2021-10-19 12:22
题:已知正三角形 $\triangle ABC$,点 $D,E$ 分别在边 $BC$,$AC$ 上,满足 $\triangle ADB=2\triangle EDC$,若 $BD=3$,$CE=4$,则 $AD=$____.

我计算出来的结果是 7,很巧与2#链接数据基本一样.

因为是作角分线+无聊计算,就不给具体过程了.
大体是 $\angle BDA$ 的平分线交 $AB$ 于$F$,设 $DC=a$,由相似三角形及内角平分线定理,可求得$$AD=3\cdot \frac {(a+3)-\frac {12}{a}}{\frac {12}{a}}=\frac {a^2+3a-12}4.$$
另一方面易得$$AD^2=a^2+3a+9.$$
于是$$a^2+3a=40,\Rightarrow AD=\frac {40-12}4=7.$$


与2#链接解法完全不同……


================
猜测就是:$$AD=BD+CE.$$

54

Threads

959

Posts

9977

Credits

Credits
9977

Show all posts

乌贼 Posted 2021-10-19 15:14
1111-6.png
$ ADF $为正三角形,$ E_1 $为$ E $关于$ BC $的对称点,易证\[ \angle DAC+2\angle DEC=180\du  \]即$ \triangle DFE_1 $为等腰三角形,所以\[ AD=DF=FE_1=BD+CE \]

Rate

Number of participants 1威望 +1 Collapse Reason
isee + 1 补上+1,妙手

View Rating Log

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

isee Posted 2021-10-19 16:04
回复 4# 乌贼


还是纯平几法有味道

Mobile version|Discuz Math Forum

2025-5-31 10:33 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit