Forgot password?
 Create new account
View 368|Reply 5

这个求极限的过程是否正确?

[Copy link]

801

Threads

4889

Posts

310K

Credits

Credits
36169

Show all posts

isee Posted at 2021-11-3 20:52:28 |Read mode
Last edited by isee at 2021-11-3 21:18:00求极限\[\lim_{n \to  \infty}\left(\frac 1n+\mathrm e^{\frac 1n}\right)^n\]

泰勒展开 $n\to \infty ,\mathrm e^{\frac 1n} = 1+\frac 1n+o\left(\frac 1n\right)$ 于是

\begin{align*}  \lim_{n \to  \infty}\left(\frac 1n+\mathrm e^{\frac 1n}\right)^n &=\lim_{n \to  \infty}\exp \bigg(\ln\left(\frac 1n+\mathrm e^{\frac 1n}\right)^n\bigg)\\[1em]\\  &=\exp \bigg(\lim_{n \to  \infty}n\ln\left(\frac 1n+\mathrm e^{\frac 1n}\right)\bigg)\\[1em]  &=\exp \bigg(\lim_{n \to  \infty}n\ln\left(\frac 1n+1+\frac 1n+o( 1/n)\right)\bigg)\\[1em]  &=\exp \bigg(\lim_{n \to  \infty}n\ln\left(1+\frac 2n+o(1/n)\right)\bigg)\\[1em]  &=\lim_{n \to  \infty}\ln\left(1+\frac 2n\right)^{\frac n2\cdot 2}\\[1em] &=\mathrm e^2. \end{align*}

----------------
以上过程是否正确?

700

Threads

110K

Posts

910K

Credits

Credits
94177
QQ

Show all posts

kuing Posted at 2021-11-3 21:36:59
应该没什么问题,不过先将指数 n 拿下来,最后又拿回去,感觉有点儿多余

700

Threads

110K

Posts

910K

Credits

Credits
94177
QQ

Show all posts

kuing Posted at 2021-11-3 21:45:43
我喜欢这样写,令 `1/n=x`,则
\[\text{原式}=\lim_{x\to0}(x+e^x)^{1/x}=\exp\left( \lim_{x\to0}\frac{\ln(x+e^x)}x \right)=\exp\left( \lim_{x\to0}\frac{\ln(1+2x+o(x))}x \right),\]然后 `\ln(1+2x+o(x))\sim2x+o(x)`,所以
\[\cdots=\exp\left( \lim_{x\to0}\frac{2x+o(x)}x \right)=\exp(2).\]

Rate

Number of participants 2威望 +3 Collapse Reason
isee + 2 double
tommywong + 1

View Rating Log

84

Threads

436

Posts

5432

Credits

Credits
5432

Show all posts

tommywong Posted at 2021-11-3 21:57:06
有得洛必達
$\displaystyle \exp\left(\lim_{n \to  \infty}n\ln\left(\frac{1}{n}+e^{\frac{1}{n}}\right)\right)
=\exp\left(\lim_{n \to  \infty}\frac{1}{1/n}\ln\left(\frac{1}{n}+e^{\frac{1}{n}}\right)\right)$

Rate

Number of participants 1威望 +1 Collapse Reason
isee + 1

View Rating Log

801

Threads

4889

Posts

310K

Credits

Credits
36169

Show all posts

 Author| isee Posted at 2021-11-3 22:03:51
应该没什么问题,不过先将指数 n 拿下来,最后又拿回去,感觉有点儿多余 ...
kuing 发表于 2021-11-3 21:36
是啊,哈哈哈哈哈


回复 3# kuing

其实就是这么思考的,只是不想打分式,当时




PS:这个评分能不能取消或增加24h次数?

801

Threads

4889

Posts

310K

Credits

Credits
36169

Show all posts

 Author| isee Posted at 2021-11-3 22:05:13
回复 4# tommywong

想法上,书写上更自然些

手机版Mobile version|Leisure Math Forum

2025-4-21 01:35 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list