Forgot password?
 Register account
View 543|Reply 7

[不等式] 是否有纯代数方法求卡西尼卵形线上坐标的范围

[Copy link]

92

Threads

89

Posts

983

Credits

Credits
983

Show all posts

aishuxue Posted 2021-11-24 12:10 |Read mode
已知$\sqrt{(x+2)^2+y^2}\cdot\sqrt{(x-2)^2+y^2}=16$, 求$x$, $y$的范围?

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

isee Posted 2021-11-24 12:21

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

isee Posted 2021-11-24 12:27
其他方法发来学习下

92

Threads

89

Posts

983

Credits

Credits
983

Show all posts

 Author| aishuxue Posted 2021-11-24 14:33
没有啊,就是利用面积,谢谢啊。

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2021-11-24 15:17
给定 `a`, `c>0`,曲线
\[\sqrt{(x+c)^2+y^2}\cdot\sqrt{(x-c)^2+y^2}=a^2.\quad(*)\]
先求 `x` 范围,式 (*) 两边平方展开按 `y` 配方为
\[(x^2+y^2+c^2)^2=a^4+4c^2x^2,\]上式存在 `y` 当且仅当
\[a^4+4c^2x^2\geqslant(x^2+c^2)^2,\]即 `a^4\geqslant(x^2-c^2)^2`,也即 `c^2-a^2\leqslant x^2\leqslant c^2+a^2`,所以 `x` 的范围为
\[\led
&{\Bigl[-\sqrt{c^2+a^2},\sqrt{c^2+a^2}\Bigr],}&&a\geqslant c,\\
&{\Bigl[-\sqrt{c^2+a^2},-\sqrt{c^2-a^2}\Bigr]\cup\Bigl[\sqrt{c^2-a^2},\sqrt{c^2+a^2}\Bigr],}&&a<c.
\endled\]
再求 `y` 范围,式 (*) 两边平方展开按 `x` 配方为
\[(x^2+y^2-c^2)^2=a^4-4c^2y^2,\]上式存在 `x` 当且仅当
\[(y^2\leqslant c^2\land a^4-4c^2y^2\geqslant0)\lor\bigl(y^2>c^2\land a^4-4c^2y^2\geqslant(y^2-c^2)^2\bigr),\]即
\[y^2\leqslant\min\left\{ c^2,\frac{a^4}{4c^2} \right\}\lor c^2<y^2\leqslant a^2-c^2,\]当 `a^2\geqslant2c^2` 时上式化为 `y^2\leqslant a^2-c^2`,当 `a^2<2c^2` 时上式化为 `y^2\leqslant\frac{a^4}{4c^2}`,所以 `y` 的范围为
\[\led
&{\Bigl[-\sqrt{a^2-c^2},\sqrt{a^2-c^2}\Bigr],}&&a\geqslant\sqrt2c,\\
&{\left[-\frac{a^2}{2c},\frac{a^2}{2c}\right],}&&a<\sqrt2c.
\endled\]

Rate

Number of participants 1威望 +1 Collapse Reason
isee + 1 赞~~~

View Rating Log

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

isee Posted 2021-11-24 15:39
回复 5# kuing

你又自娱自乐了一回,打赌不,哈哈哈哈哈,当然,解法很赞,这一直都是

92

Threads

89

Posts

983

Credits

Credits
983

Show all posts

 Author| aishuxue Posted 2021-11-25 12:13
回复 5# kuing

太强了,好好学习!

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2021-11-25 15:21
昨天 5# 最后一行分母打错,现已改正。

Mobile version|Discuz Math Forum

2025-5-31 10:32 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit