Forgot password?
 Register account
View 324|Reply 3

1/x 拉格朗日插值

[Copy link]

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2021-12-22 04:59 |Read mode
Last edited by hbghlyj 2022-8-14 08:28$$\sum_{i=1}^k(\frac{1}{\alpha_i}\prod_{\substack{1\le j\le k\\j\neq i}}\frac{\alpha_j}{\alpha_j-\alpha_i})=\sum_{i=1}^k\frac{1}{\alpha_i}$$证明:令$\displaystyle P(X)=\sum_{i=1}^k \frac{1}{\alpha_i}\prod_{\substack{1\le j\le k\\j\neq i}} \frac{\alpha_j-X}{\alpha_j-\alpha_i}$,则$$P(0)=\sum_{i=1}^k(\frac{1}{\alpha_i}\prod_{\substack{1\le j\le k\\j\neq i}}\frac{\alpha_j}{\alpha_j-\alpha_i})\tag1\label1$$记$Q(X)=XP(X)-1$,则$Q$是$k$次多项式且有$k$个不同的根$\alpha_1,\cdots,\alpha_k$.记$Q$的首项系数为$\lambda$,则$Q(X)=\lambda\prod_{j=1}^k (X-\alpha_j)$.
因为$\displaystyle \frac{Q'(X)}{Q(X)}=\sum_{j=1}^k\frac{1}{X-\alpha_j}$,
所以$\displaystyle \frac{Q'(0)}{Q(0)}=-\sum_{j=1}^k\frac{1}{\alpha_j}$,
但$Q'(0)=P(0),Q(0)=-1$,所以$$P(0)=\sum_{j=1}^k\frac1{a_j}\tag2\label2$$由\eqref{1}\eqref{2},原式得证.

出处(第二种方法是计算留数)
类似题

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2022-8-14 14:54
本题等价于$$\sum_{i=1}^{k}\frac{\alpha_{i}^{-2}}{\prod_{\substack{1\le j\le k\\j\neq i}}(\alpha_{i}-\alpha_{j})}=\frac{\left(-1\right)^{k-1}}{\prod_{i=1}^{k}\alpha_i}\sum_{i=1}^{k}\frac1{\alpha_i}$$等价于这帖的式(6)的$r=2$情况 [注意: 这帖的$a_i$的下标是从0开始的,而本题$\alpha_i$的下标是从1开始的]

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2022-8-14 15:20
多重下限建议用 \substack{...\\\\...} ,mathjax 虽然兼容 \array{...\\\\...} ,但在真 latex 里会报错。

Comment

好的  Posted 2022-8-14 15:28

Mobile version|Discuz Math Forum

2025-5-31 11:14 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit