|
Last edited by hbghlyj 2022-8-14 08:28$$\sum_{i=1}^k(\frac{1}{\alpha_i}\prod_{\substack{1\le j\le k\\j\neq i}}\frac{\alpha_j}{\alpha_j-\alpha_i})=\sum_{i=1}^k\frac{1}{\alpha_i}$$证明:令$\displaystyle P(X)=\sum_{i=1}^k \frac{1}{\alpha_i}\prod_{\substack{1\le j\le k\\j\neq i}} \frac{\alpha_j-X}{\alpha_j-\alpha_i}$,则$$P(0)=\sum_{i=1}^k(\frac{1}{\alpha_i}\prod_{\substack{1\le j\le k\\j\neq i}}\frac{\alpha_j}{\alpha_j-\alpha_i})\tag1\label1$$记$Q(X)=XP(X)-1$,则$Q$是$k$次多项式且有$k$个不同的根$\alpha_1,\cdots,\alpha_k$.记$Q$的首项系数为$\lambda$,则$Q(X)=\lambda\prod_{j=1}^k (X-\alpha_j)$.
因为$\displaystyle \frac{Q'(X)}{Q(X)}=\sum_{j=1}^k\frac{1}{X-\alpha_j}$,
所以$\displaystyle \frac{Q'(0)}{Q(0)}=-\sum_{j=1}^k\frac{1}{\alpha_j}$,
但$Q'(0)=P(0),Q(0)=-1$,所以$$P(0)=\sum_{j=1}^k\frac1{a_j}\tag2\label2$$由\eqref{1}\eqref{2},原式得证.
出处(第二种方法是计算留数)
类似题 |
|