|
Last edited by hbghlyj 2022-8-14 02:45“Vandermonde行列式的一个推广及其在初等数学中的应用” 肖振纲
文〔1〕、〔2〕先后利用复变函数中的留数定理讨论了初等数学中的I.J.Matrix定理的两个推广, 文〔3〕则用初等方法讨论了所述两个推广的关系。
本文首先给出高等代数中著名的Vandermonde行列式〔4〕的一个推广(不同于文〔5〕),然后简单地导出I.J.Matrix定理的两个推广, 并由此进一步给出几类新颖而有趣的组合恒等式.
定理1 设 $n$ 是一个正整数, $r$ 是一个非负整数,对任意 $n+1$ 个数 $x_{0}, x_{1}, \cdots, x_n$, 令
$$\tag1\label1
D(n, r)=\left|\begin{array}{cccccc}
1 & x_{0} & x_{0}^{2} & \cdots & x_{0}^{n-1} & x_{0}^{r} \\
1 & x_{1} & x_{1}^{2} & \cdots & x_{1}^{n-1} & x_{1}^{r} \\
\cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\
1 & x_{n} & x_{n}^{2} & \cdots & x_{n}^{n-1} & x_{n}^{r}
\end{array}\right|
$$
则有$$\tag2\label2 D(n,r)=\begin{cases}0&,(0\le r\le n-1)\\\prod_{0\le j<i\le n}(x_i-x_j)\sum_{j_{0}+j_{1}+\cdots+j_n=r-n} x_{0}^{j_{0}}x_{1}^{j_{1}} \cdots x_n^{j_n}&,(r\ge n)\end{cases}$$
其中, $j_{0}, j_{1}, \cdots, j_{n}$皆为非负整数 (在后面的讨论中, 这一说明从略)。
证明 当 $0 \leqslant r \leqslant n-1$ 时, $D(n, r)$ 中有两列元素相同, 所以, $D(n, r)=0$,下面用数学归纳法证明 $r \geqslant n$ 的情形。
当 $r \geqslant 1$ 时, 因
$$D(1, r)=x_{1}^{r}-x_{0}^{r}=\left(x_{1}-x_{0}\right)\left(x_{0}^{r-1}+x_0^{r-2} x_{1}+\cdots+x_{1}^{r-1}\right)=\left(x_{1}-x_{0}\right) \sum_{j_{0}+j_{1}=r-1} x_0^{j_{0}} x_{1}^{j_{1}}$$所以, 当 $n=1$ 时, 结论成立, 设结论对 $n-1(n \geqslant 2, r \geqslant n-1)$ 的情形成立, 现考虑 $n(r \geqslant n)$ 的情形。
将行列式 $D(n, r)$ 中的第 $n+1$ 列减去第 $n$ 列的$x_{n}^{r-n+1}$ 倍, 而对其余的列, 自右至左依次从每一列减去它前一列的 $x_n$ 倍,则由行列式的性质,有$$\eqalign{D(n,r)&=\begin{vmatrix}
1 & x_{0}-x_{n} & x_{0}^{2}-x_{0} x_n&⋯& x_{0}^{n-1}-x_{0}^{n-2} x_n & x_{0}^{r}-x_{0}^{n-1} x_n^{r-n+1}\\
1 & x_{1}-x_{n} & x_{1}^{2}-x_{1} x_{n}&⋯& x_{1}^{n-1}-x_{1}^{n-2} x_{n} & x_{1}^{r}-x_{1}^{n-1} x_n^{r-n+1}\\
⋯ & ⋯ & ⋯ & ⋯ &⋯& ⋯\\
1 & x_{n-1}-x_n& x_{n-1}^{2}-x_{n-1} x_n &⋯& x_{n-1}^{n-1}-x_{n-1}^{n-2} x_{n} & x_{n-1}^r-x_{n-1}^{n-1} x_{n}^{r-n+1}\\
1 & 0 & 0 &⋯& 0 & 0\end{vmatrix}\\
&=(-1)^{n+2}\begin{vmatrix}
x_{0}-x_n & x_{0}^{2}-x_{0} x_n& \cdots & x_{0}^{n-1}-x_{0}^{n-2} x_n& x_{0}^{r}-x_{0}^{n-1} x_n^{r-n+1}\\
x_{1}-x_n & x_{1}^{2}-x_{1} x_n & \cdots& x_{1}^{n-1}-x_{1}^{n-2} x_n& x_{1}^{r}-x_{1}^{n-1} x_n^{r-n+1}\\
⋯ & ⋯ & ⋯ & ⋯ & ⋯\\
x_{n-1}-x_n&x_{n-1}^{2}-x_{n-1} x_n & \cdots & x_{n-1}^{n-1}-x_{n-1}^{n-2} x_n & x_{n-1}^{r}-x_{n-1}^{n-1} x_n^{r-n+1}\end{vmatrix}\\
&=\prod_{i=0}^{n-1}\left(x_n-x_{i}\right)\begin{vmatrix}
1 & x_{0} & \cdots & x_{0}^{n-2} & x_{0}^{n-1} \sum_{k+j_n=r-n} x_{0}^{k} x_n^{j_{n}}\\
1 & x_{1} & \cdots & x_{1}^{n-2} & x_{1}^{n-1} \sum_{k+j_{n}=r-n} x_{1}^{k} x_{n}^{j_n}\\
⋯ & ⋯ & ⋯ & ⋯ & ⋯\\
1 & x_{n-1} & \cdots & x^{n-2}_{n-1} & x_{n-1}^{n-1} \sum_{k+j_n=r-n} x_{n-1}^{k} x_{n}^{j_{n}}
\end{vmatrix}\\
&=\prod_{i=0}^{n-1}\left(x_n-x_{i}\right) \sum_{k+j_n=r-n} x_{n}^{j_n}\left|\begin{array}{c}1 & x_{0} & \cdots & x_{0}^{n-2} & x_{0}^{n-1+k} \\ 1 & x_{1} & \cdots & x_{1}^{n-2} & x_{1}^{n-1+k} \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ 1 & x_{n-1} & \cdots & x_{n-1}^{n-2} & x_{n-1}^{n-1+k}\end{array}\right|\\
&=\prod_{i=0}^{n-1}\left(x_n-x_{i}\right)\sum_{k+j_n=r-n}x_n^{j_n}D(n-1,n-1+k)}$$因$n-1+k\geq n-1$,由归纳假设,有
$$D(n-1,n-1+k)=\prod_{0\le j<i\le n-1}(x_i-x_j)\sum_{j_{0}+j_{1}+\cdots+j_{n-1}=k} x_{0}^{j_{0}} x_{1}^{j_{1}} \cdots \cdots x_{n-1}^{j_{n-1}}$$于是, 当$r\geqslant n$时, 有$$\eqalign{D(n,r)&=\prod_{i=0}^{n-1}\left(x_n-x_{i}\right)\prod_{0\le j<i\le n-1}\left(x_{i}-x_{j}\right)\sum_{k+j_n=r-n}x_n^{j_n}\sum_{j_0+j_1+\dots+j_{n-1}=k}x_0^{j_0}x_1^{j_1}\dots x_{n-1}^{j_{n-1}}
\\&=\prod_{0\le j<i\le n}\left(x_{i}-x_{j}\right) \sum_{j_{0}+j_{1}+\cdots+j_n=r-n} x_{0}^{j_{0}} x_{1}^{j_1} \cdots x_n^{j_n}}$$因此,结论对$n$的情形也成立,故结论对一切正整数皆成立,证毕。
特别地,当$r=n$时,$D(n,n)$即为$n+1$阶Vandermonde行列式,由于$$\sum_{j_{0}+j_{1}+\cdots+j_n=0} x_0^{j_0} x _{1}^{j_{1}} \cdots x_n^{j_{n}}=1$$因此,$$D(n, n)=\prod_{0 \leqslant j<i \leqslant n}\left(x_{i}-x_{j}\right)$$这正是著名的Vandemonde行列式的结论, 故定理1是它的一个推广.
我们还可以将$r$拓广到负整数.
定理2 设$n,r$皆为正整数, $x_0,x_1,\dots,x_{n}$是$n+1$个不全为零的数, 记$$\tag3\label3d=\left|\begin{array}{c}1 & x_{0} & x_{0}^2& \cdots & x_{0}^{n-1} & x_{0}^{-r} \\ 1 & x_{1} & x_{1}^2 & \cdots & x_{1}^{n-1} & x_{1}^{-r} \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ 1 & x_n & x_n^2 & \cdots & x_n^{n-1} & x_n^{-r}\end{array}\right|$$则$$\tag4\label4d=\frac{(-1)^n \prod_{0 \leqslant j<i \leqslant n}\left(x_{i}-x_{j}\right)}{\prod_{0\leqslant i\leqslant n}x_i} \sum_{j_{0}+j_{1}+\cdots+j_n=r-1} x_{0}^{-j_{0}} x_{1}^{-j_{1}} \cdots x_n^{-j_n}$$证明$$\eqalign{d=&\left(\prod_{0 \leqslant i \leqslant n} x_{i}\right)^{n-1}\left|\begin{array}{ccccc}x_{0}^{-(n-1)} & x_{0}^{-(n-2)} & \cdots & 1 & x_{0}^{-(r+n-1)} \\ x_{1}^{-(n-1)} & x_{1}^{-(n-2)} & \cdots & 1 & x_{1}^{-(r+n-1)} \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ x_{n}^{-(n-1)} & x_{n}^{-(n-2)} & \cdots & 1 & x_{n}^{-(r+n-1)}\end{array}\right|\quad各行提取x_i^{n-1}\\
=&(-1)^{\frac{n(n-1)}{2}}\left(\prod_{0 \leq i \leq n} x_{i}\right)^{n-1}\left|\begin{array}{ccccc}1 & x_{0}^{-1} & \cdots & x_{0}^{-(n-1)} & x_{0}^{-(r+n-1)} \\ 1 & x_{1}^{-1} & \cdots & x_{1}^{-(n-1)} & x_{1}^{-(r+n-1)} \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ 1 & x_n^{-1} & \cdots & x_{n}^{-(n-1)} & x_n^{-(r+n-1)}\end{array}\right|\quad将前n列倒过来\\
=&(-1)^{\frac{n(n-1)}{2}}\left(\prod_{0 \leqslant i \leqslant n} x_{i}\right)^{n-1} \prod_{0 \leqslant j<i \leqslant n}\left(x_{i}^{-1}-x_{j}^{-1} \right)\sum_{j_{0}+j_{1}+\cdots+j_{n}=r-1} x_0^{-j_{0}} x_{1}^{-j_{1}} \cdots x_{n}^{-j_{n}}
\quad由定理1}$$但$$\prod_{0 \leqslant j<i \leqslant n}\left(x_{i}^{-1}-x_{j}^{-1}\right)=\left(\prod_{0 \leqslant i \leqslant n} x_{i}\right)^{-n} \prod_{0 \leqslant j<i \leqslant n}\left(x_{j}-x_{i}\right)=(-1)^{\frac{n(n+1)}{2}}\left(\prod_{0 \leqslant i \leqslant n} x_{i}\right)^{-n} \prod_{0 \leqslant j<i \leqslant n}\left(x_{i}-x_{j}\right)$$故$$\eqalign{d&=(-1)^{n^{2}}\left(\prod_{0 \leqslant i \leqslant n} x_{i}\right)^{-1} \prod_{0 \leqslant j<i \leqslant n}\left(x_{i}-x_{j}\right)\sum_{j_{0}+j_{1}+\cdots+j_{n}=r-1} x_0^{-j_0} x_{1}^{-j_1} \cdots x_{n}^{-j_n}\\&=\frac{(-1)^n\prod_{0 \leqslant j<i \leqslant n}\left(x_{i}-x_{j}\right)}{\prod_{0 \leqslant i \leqslant n} x_{i}}\sum_{j_{0}+j_{1}+\cdots+j_n=r-1} x_0^{-j_0} x_{1}^{-j_1} \cdots x_n^{-j_n}\quad\text{证毕}}$$
Vandermonde行列式的一个推广及其在初等数学中的应用_肖振纲.pdf
(352.04 KB, Downloads: 46)
|
|