|
Author |
exctttt
Posted 2021-12-28 22:50
Last edited by exctttt 2021-12-29 12:58回复 2# kuing
版主好强,用类似的方法确实可以做
显然 $\{a_n\}$ 递增,故 $$a_{n+1}<a_n+\dfrac{a_na_{n+1}}{2021}$$
有 $$\dfrac{1}{a_n}<\dfrac{1}{a_{n+1}}+\dfrac{1}{2021}$$
对 $n=1, 2, \cdots, n-1$ 求和,得 $$\dfrac{1}{a_1}<\dfrac{1}{a_n}+\dfrac{n-1}{2021}$$
若 $a_n>1$ ,则 $n>2022$,同时有 $n\le2022$ 时, $a_n\le1$ .
下证 $a_{2023}>1$ 成立.
由 $$a_{n+1}=a_n+\dfrac{a^2_n}{2021}$$
得 $$\dfrac{1}{a_{n+1}}=\dfrac{1}{a_n}-\dfrac{1}{a_n+2021}$$
当 $n\le2022$ 时, $$\dfrac{1}{a_{n+1}}\le\dfrac{1}{a_n}-\dfrac{1}{1+2021}$$
对 $n=1, 2, \cdots, 2022$ 求和,得 $$\dfrac{1}{a_{2023}}<\dfrac{1}{a_1}-1$$
即 $$a_{2023}>1$$
故 $n$ 的最小值为 $2023$ . |
|