Forgot password?
 Register account
View 773|Reply 7

infinite products

[Copy link]

3153

Threads

7906

Posts

610K

Credits

Credits
64096
QQ

Show all posts

hbghlyj Posted 2021-12-28 05:16 |Read mode
Last edited by hbghlyj 2025-5-6 21:43$$\prod_{n=1}^{+\infty}\left(1+x^{2 n-1}\right)^{8}-\prod_{n=1}^{+\infty}\left(1-x^{2 n-1}\right)^{8}=16 x \prod_{n=1}^{+\infty}\left(1+x^{2 n}\right)^{8}$$ 这其实是theta函数的四次方和性质,相当于1/lambda(z)+1/lambda(z+1)=1 For $|x|<1$, prove $\prod_{n \geq 1}\left(\frac{1}{1+x^{n}} \frac{1}{1+x^{2 n-1}}\right)^{8}+16 \prod_{n \geq 1}\left(\frac{1+x^{2 n}}{1+x^{2 n-1}}\right)^{8}=1$
$-\sum_{n \geq 1} \frac{n q^{n}}{1-q^{n}}-8 \sum_{n \geq 1} \frac{n q^{4 n}}{1-q^{4 n}}+6 \sum_{n \geq 1} \frac{n q^{2 n}}{1-q^{2 n}}=\sum_{n \geq 1} \frac{2 n q^{2 n}}{1+q^{2 n}}-\sum_{n \geq 1} \frac{(2 n-1) q^{2 n-1}}{1+q^{2 n-1}}$

682

Threads

110K

Posts

910K

Credits

Credits
90973
QQ

Show all posts

kuing Posted 2022-1-5 13:18
将两层连成一层

682

Threads

110K

Posts

910K

Credits

Credits
90973
QQ

Show all posts

kuing Posted 2022-1-5 13:32
回复 4# hbghlyj

其实我也好奇那堆空的表格到底起了什么作用?

459

Threads

952

Posts

9843

Credits

Credits
9843

Show all posts

青青子衿 Posted 2022-1-7 10:35
Last edited by 青青子衿 2023-8-30 17:04\begin{align*}
\color{black}{\prod_{n=1}^{+\infty}\left[\left(1+q^{2 n-1}\right)^{8}\right]-\prod_{n=1}^{+\infty}\left[\left(1-q^{2 n-1}\right)^{8}\right]=16 q \prod_{n=1}^{+\infty}\left[\left(1+q^{2 n}\right)^{8}\right]}
\end{align*}
这个无穷乘积表达式好像和椭圆伊塔/西塔函数有关……

48

Threads

771

Posts

110K

Credits

Credits
13880
QQ

Show all posts

Czhang271828 Posted 2022-1-30 11:58
回复 6# 青青子衿

找到一位玩这个的老哥...

www-elsa.physik.uni-bonn.de/~dieckman/InfProd … vingxThetaxFunctions

48

Threads

771

Posts

110K

Credits

Credits
13880
QQ

Show all posts

Czhang271828 Posted 2022-8-9 21:06
An elementary proof without the knowlegde of $\eta$ -function, modular form, etc. Can be found in P155 in the book An Invitation to $q$ -Series. The book Eta Products and Theta Series Identities is one of my dictionaries in the study of modular form, where you can find the identity at page 152.
无钱佮歹看、无样佮歹生、无汉草佮无文采、无学历佮无能力、无高度无速度无力度共闲无代志。(闽南话)
口号:疼惜生命,远离内卷。

459

Threads

952

Posts

9843

Credits

Credits
9843

Show all posts

青青子衿 Posted 2023-5-15 15:46
Last edited by 青青子衿 2023-5-15 20:58
Czhang271828 发表于 2022-8-9 21:06
An elementary proof without the knowlegde of $\eta$ -function, modular form, etc. Can be found in  ...

\begin{align*}
\left.\partial_z\vartheta_1(z,q)\right|_{z=0}&=2 \sqrt[4]{q}\prod\limits_{i=1}^{+\infty\>\>}\left(1-q^{2 k}\right)^3\\
\vartheta_2(0,q)&=2 \sqrt[4]{q}\prod\limits_{i=1}^{+\infty\>\>}\left(1-q^{2 k}\right) \left(1+q^{2 k}\right)^2\\
\vartheta_3(0,q)&=\prod\limits_{i=1}^{+\infty\>\>}\left(1-q^{2 k}\right) \left(1+q^{2 k-1}\right)^2\\
\vartheta_4(0,q)&=\prod\limits_{i=1}^{+\infty\>\>}\left(1-q^{2 k}\right) \left(1-q^{2 k-1}\right)^2\\
\sqrt{k}&=\dfrac{\vartheta_2(0,q)}{\vartheta_3(0,q)}=2\sqrt[4]{q}\cdot\left[\dfrac{\prod\limits_{i=1}^{+\infty\>\>}(1+q^{2k})}{\prod\limits_{i=1}^{+\infty\>\>}(1+q^{2k-1})}\right]^2\\
\sqrt{k'}&=\dfrac{\vartheta_4(0,q)}{\vartheta_3(0,q)}=\left[\dfrac{\prod\limits_{i=1}^{+\infty\>\>}(1-q^{2k-1})}{\prod\limits_{i=1}^{+\infty\>\>}(1+q^{2k-1})}\right]^2\\
k^2+k'^2&=1
\end{align*}


  1. 2 q^(1/4) Product[(1 - q^(2 k))^3, {k, 1, +Infinity}] /. q -> 0.3
  2. EllipticThetaPrime[1, 0, 0.3]
  3. 2 q^(1/4) Product[(1 - q^(2 k)) (1 + q^(2 k))^2, {k,
  4.     1, +Infinity}] /. q -> 0.3
  5. EllipticTheta[2, 0, 0.3]
  6. Product[(1 - q^(2 k)) (1 + q^(2 k - 1))^2, {k, 1, +Infinity}] /.
  7. q -> 0.3
  8. EllipticTheta[3, 0, 0.3]
  9. Product[(1 - q^(2 k)) (1 - q^(2 k - 1))^2, {k, 1, +Infinity}] /.
  10. q -> 0.3
  11. EllipticTheta[4, 0, 0.3]
Copy the Code

459

Threads

952

Posts

9843

Credits

Credits
9843

Show all posts

青青子衿 Posted 2023-5-26 17:58
青青子衿 发表于 2022-1-7 10:35
\begin{align*}
\color{black}{\prod_{n=1}^{+\infty}\left[\left(1+q^{2 n-1}\right)^{8}\right]-\prod_{n=1}^{+\infty}\left[\left(1-q^{2 n-1}\right)^{8}\right]=16 q \prod_{n=1}^{+\infty}\left[\left(1+q^{2 n}\right)^{8}\right]}
\end{align*}
...
An Identity Relating a Theta Function to a Sum of Lambert Series
researchgate.net/publication/228887537_An_Ide … um_of_Lambert_Series

Mobile version|Discuz Math Forum

2025-6-5 01:54 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit