Forgot password
 Register account
View 477|Reply 2

[几何] 初三几何

[Copy link]

412

Threads

1432

Posts

3

Reputation

Show all posts

realnumber posted 2022-2-1 20:43 |Read mode
Last edited by hbghlyj 2025-4-9 06:27
如图所示,圆A中两条互相垂直的弦,BF,HG,且∠HAB=45°,又DC=EC,圆心A在DE上,试把等腰直角三角形DCE的面积y表示为AC长x的函数(半径不妨设为5).


放弃,查了下作业帮
plat-miniapp.zuoyebang.com/miniapp/share/205a … it=1&sharePath=4

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2022-2-2 15:03
我昨晚想了一下,只想到高中方法,就没发,既然今天楼主已经查到答案,那我也写下我想到的。

设 A 到 GH、BF 的距离为 a、b,则 CD=CE=a+b,所以 `2S=(a+b)^2`,又 `AC^2=a^2+b^2`,所以 `2ab=2S-AC^2`。

由两弦垂直得 `\angle GAB+\angle HAF=180\du`,再由 `\angle HAB=45\du`,得 `\angle GAH+\angle BAF=270\du`,记 `\angle GAH=2\alpha`, `\angle BAF=2\beta`,则 `\cos\alpha=a/5`, `\cos\beta=b/5`,则
\[\cos135\du=\cos(\alpha+\beta)=\frac{ab}{25}-\sqrt{1-\frac{a^2}{25}}\sqrt{1-\frac{b^2}{25}},\]
移项平方得
\[2(a^2+b^2)+2\sqrt2ab=25,\]
代入上面的,即
\[2AC^2+\sqrt2(2S-AC^2)=25.\]

Rate

Number of participants 1威望 +1 Collapse Reason
realnumber + 1 谢谢kk:)

View Rating Log

3211

Threads

7832

Posts

52

Reputation

Show all posts

hbghlyj posted 2025-4-9 05:21
链接失效了?

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-20 05:53 GMT+8

Powered by Discuz!

Processed in 0.012431 seconds, 24 queries