Forgot password?
 Create new account
View 488|Reply 6

[不等式] 最小值

[Copy link]

78

Threads

33

Posts

919

Credits

Credits
919

Show all posts

大佬最帅 Posted at 2022-2-9 17:25:21 |Read mode
mmexport1644398686481.png

Related collections:

701

Threads

110K

Posts

910K

Credits

Credits
94172
QQ

Show all posts

kuing Posted at 2022-2-9 18:23:10
先用baoli方法看取等:
齐次化 `\frac{(7\sqrt a-4\sqrt b)^4}{a(a-4b)}`,换元 `\frac{(7-4t)^4}{1-4t^2}`,求导分解可算出 `t=1/4`,因此取等是 `a=16b`。

擦掉以上,凑装逼解法:
由 `(ac-bd)^2\geqslant(a^2-b^2)(c^2-d^2)` 及均值得
\[\bigl( 7\sqrt a-4\sqrt b \bigr)^2\geqslant(7-1)(7a-16b)=6\bigl(3a+4(a-4b)\bigr)\geqslant12\sqrt{12a(a-4b)}=12^2,\]
开荒即得 `7\sqrt a-4\sqrt b\geqslant12`,当 `a=4`, `b=1/4` 时取等。

78

Threads

33

Posts

919

Credits

Credits
919

Show all posts

 Author| 大佬最帅 Posted at 2022-2-9 18:39:39
回复 2# kuing
放一个更……的解答
mmexport1644403138773.jpg

701

Threads

110K

Posts

910K

Credits

Credits
94172
QQ

Show all posts

kuing Posted at 2022-2-9 19:04:36
回复 3# 大佬最帅

这和我 2# 后面写的是一样啊

78

Threads

33

Posts

919

Credits

Credits
919

Show all posts

 Author| 大佬最帅 Posted at 2022-2-9 19:26:00
回复 4# kuing
没仔细看

801

Threads

4889

Posts

310K

Credits

Credits
36169

Show all posts

isee Posted at 2022-2-9 22:14:19
Last edited by isee at 2022-2-9 23:09:00回复 2# kuing


我来常规的

题:已知实数满足$a(a-4b)=12$,则$7\sqrt a-4\sqrt b$的最小值为____.

PS:此题数学公式代码是入门入门入门级的,楼主都忽略    

令$7\sqrt a=x>0$,$-4\sqrt b=y<0$,条件化为$\frac {x^2}{49}\left(\frac {x^2}{49}-\frac {y^2}{4}\right)=12$,求$x+y$的最小值.


\begin{align*}
12&=\frac {x^2}{49}\left(\frac {x^2}{49}-\frac {y^2}{4}\right)\\[1em]
12&=\left(\frac {x}{7}\right)^2\left(\frac {x}{7}-\frac {y}{2}\right)\left(\frac {x}{7}+\frac {y}{2}\right)\\[1em]
\frac 43\cdot 12&=\left(\frac {x}{7}\right)^2\cdot \frac 23\left(\frac {x}{7}-\frac {y}{2}\right)\cdot 2\left(\frac {x}{7}+\frac {y}{2}\right)\\[1em]
16&=\left(\frac {x}{7}\right)^2\left(\frac {2x}{21}-\frac {y}{3}\right)\left(\frac {2x}{7}+\frac {y}{1}\right)\\[1em]
&\leqslant \left(\frac {2\cdot \frac {x}7+\frac {2x}{21}-\frac y3+\frac {2x}7+y}{4}\right)^4\\[1em]
&=\left(\frac {\frac {2x}3+\frac {2y}3}{4}\right)^4\\[1em]
\Rightarrow x+y&\geqslant 12.
\end{align*}

当且仅当$x=14,y=-2$等号成立.

当然,$3:3:2:6$系数比是用待定系数法得到的,原数据小数多解方程算错了一次符号,多花了点时间.

87

Threads

2383

Posts

110K

Credits

Credits
13325

Show all posts

其妙 Posted at 2022-2-10 13:31:07
回复 2# kuing
回复 2# kuing

我也来装一下逼,由4维均值不等式得,

$7\sqrt a  - 4\sqrt b  = \dfrac{3}{2}\sqrt a  + \dfrac{3}{2}\sqrt a  + (\sqrt a  + 2\sqrt b ) + 3(\sqrt a  - 2\sqrt b )$

${\kern 50pt}\geq4\sqrt[4]{{\dfrac{9}{4}a \cdot 3(a - 4b)}} = 4\sqrt[4]{{\dfrac{{27}}{4} \times 12}} = 12$.

手机版Mobile version|Leisure Math Forum

2025-4-20 22:14 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list