找回密码
 快速注册
搜索
查看: 148|回复: 1

实对称矩阵的实对称立方根的唯一性

[复制链接]

3149

主题

8387

回帖

6万

积分

$\style{scale:11;fill:#eff}꩜$

积分
65396
QQ

显示全部楼层

hbghlyj 发表于 2022-2-10 21:20 |阅读模式
本帖最后由 hbghlyj 于 2022-2-10 22:55 编辑 (如果不限制"对称"的话,立方根不唯一,例如,单位矩阵的立方根,可以是旋转角为$±\frac{2π}3$的旋转矩阵)
math.stackexchange.com/questions/2326596/uniqueness-of-symmetric ... eal-symmetric-matrix
(user1511的回答)
这不仅适用于实对称三次根,而且适用于所有实对称奇数$n$次根时也是如此。通过改变正交基,我们可以假设$A$是一个实对角矩阵。由于 $n$ 是奇数,因此实数具有唯一的实$n$次根。因此,$A$的每个实对称$n$次根都可以正交对角化为$QA^{1/n}Q^T$,其中$Q$是某个实正交矩阵,$A^{1/n}$是对角矩阵$A$的$n$次根。根据定义,这个$n$次根的$n$次幂必为$A$。所以,我们有 $A=(QA^{1/n}Q^T)^n=QAQ^T$。 令 $\lambda_1,\ldots,\lambda_k$ 为 $A$ 的不同特征值,$f$ 为拉格朗日插值多项式,使得 $f(\lambda_i)=\lambda_i^{1/n}$ 对于每个 $i$。那么$f(A)=A^{1/n}$(因为$A$是对角矩阵)和$QA^{1/n}Q^T=Qf(A)Q^T=f(QAQ^T) =f(A)$。因此,$A$ 的实对称$n$次根是唯一的,因为它必须等于 $f(A)$。
(hardmath的回答)
我在[Luce and Perry], "A Method of Matrix Analysis of Group Structure," (心理测量学,卷14, No. 1, 1949年3月)中发现了这个陈述和其证明:

Theorem $7$: If $n$ is a positive odd integer and $S$ a real symmetric matrix, then there is one and only one real symmetric $n^{th}$ root of $S$.


结果是他们的论文事后才想到的,它只需要立方根情况(正如这里的问题所要求的那样)。 但只要给出细节,我们不妨把所有正奇数$n$的情况都处理一下。
(这里附件限制是1M只好把它分成两份:1-10页 $type 1-10.pdf (636.17 KB, 下载次数: 36) ,11-22页 $type 11-22.pdf (604.53 KB, 下载次数: 34) )
The existence half of their proof is predictable, based on diagonalizing $m\times m$ real symmetric $S$ and taking real $n^{th}$ roots of the resulting diagonal entries (as the Asker is presumed to have done here for the cube root).  That is, if $S = PDP^T$ for diagonal $D$ and orthogonal $P$, then obtain $R$ from $D$ by extracting the $n^{th}$ root of its diagonal entries.  Now $B = PRP^T$ is real symmetric and satisfies:

$$ B^n = (PRP^T)^n = PR^nP^T = PDP^T = S $$

For specificity we can impose that the $m$ diagonal entries of $D$ are ordered ascendingly:

$$ d_{11} \le d_{22} \le \ldots \le d_{mm} $$

By monotonicity of the $n^{th}$ root function the diagonal entries of $R$ are in corresponding order.

Suppose there potentially exists $C \neq B$ which is also an $n^{th}$ root of $S$, $C^n = S$.  Then there exists an orthogonal matrix $Q$ such that $Q^T C Q = T$ is diagonal, with the same ascending order of diagonal entries as before.  Now:

$$ T^n = Q^T C^n Q = (Q^T P) R^n (P^T Q) = (Q^T P) D (P^T Q) $$

Since $T^n$ and $D$ are (orthogonally) similar, they share the same characteristic roots, and because the diagonal entries of $T$ are ascending, so too are the entries of the diagonal for $T^n$.  Thus $T^n = D$.

But also by construction $R^n = D$, and because the $n^{th}$ root is strictly monotone ($1-1$), from $R^n = T^n$ we infer $R=T$.

Let $U = P^T Q$, and rewrite the orthogonal similarity above for $T^n = D$:

$$ D = U^T D U $$

In other words the diagonal matrix $D$ commutes with the orthogonal matrix $U$, $UD = DU$.  From the definition of matrix multiplication this amounts to:

$$ u_{ik} d_{kk} = d_{ii} u_{ik} $$

for all $1\le i,k \le m$, since all the off-diagonal entries of $D$ are zeros.  In other words:

$$ u_{ik}[d_{kk} - d_{ii}] = 0 $$

It follows (once again using that taking $n^{th}$ roots is injective) that:

$$ u_{ik}[d_{kk}^{1/n} - d_{ii}^{1/n}] = 0 $$

That is, $UR = RU$. Recalling $T=R$ and $U = P^T Q$, we have:

$$ P^T QT = R P^T Q $$

$$ Q T Q^T = P R P^T $$

$$ C = B $$

This contradicts the choice of $C \neq B$ and shows that $B$ is uniquely the real symmetric $n^{th}$ root of $S$.

48

主题

361

回帖

3034

积分

积分
3034

显示全部楼层

业余的业余 发表于 2022-2-10 22:44
感谢分享!

其中 $Q$  是一些实正交矩阵

宜译为: 其中 $Q$  是某个实正交矩阵


接力一棒:
他们的证明的存在部分可以预测,基于对角化 $m\times m$ 实对称矩阵 $S$ 然后取所得对角元素们的实 $n$ 次方根(正如我相信题主此处对立方根的情形所作的一样). 也就是说,如果对对角阵 $D$ 和正交阵 $P$ 有 $S=PDP^T$, 那么(可)取 $D$ 的对角元素(们)的 $n$ 次根得到 $R$.  此时 $B=PRP^T$ 为实对称矩阵且满足\[
B^n = (PRP^T)^n = PR^nP^T = PDP^T = S
\]

为了(叙述得)具体,我们可以限制 $D$ 的 $m$ 个对角元素按升序排列\[
d_{11} \le d_{22} \le \ldots \le d_{mm}\]
根据 $n$ 次根函数的单调性,$R$ 的对角元素也必以对应的次序排列。

接下来以反证法证明实 $n$ 次对角阵根的唯一性。

手机版|悠闲数学娱乐论坛(第3版)

GMT+8, 2025-3-4 16:07

Powered by Discuz!

× 快速回复 返回顶部 返回列表