Forgot password?
 Register account
View 362|Reply 3

[几何] 圆内接四边形求 $\lambda$ 最小值

[Copy link]

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

isee Posted 2022-2-24 11:54 |Read mode
Last edited by isee 2022-2-24 18:10若圆内接四边形$ABCD$,$AC^2=\lambda BC\cdot CD$,分别在以下条件求$\lambda$的最小值.

(1) 若$\sin \angle ABD:\sin \angle ADB:\sin\angle BCD=2:3:4$.——原题

(2) 若$\angle ABC:\angle BCD:\angle CDA=2:3:4$.——改编

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

 Author| isee Posted 2022-2-25 16:51
Last edited by isee 2022-2-25 18:20(1)

注意圆周角相等,由三弦定理有\[ CA\cdot \sin BCD=CD\cdot \sin BCA+BC \cdot\sin ACD,\]即
\[ AC \cdot \sin BCD=CD\cdot \sin ADB+BC \cdot\sin ABD.\]
即\[ AC =\frac {3\cdot CD+2\cdot BC}4.\]

于是
\begin{align*}
\lambda&=\frac {AC^2}{BC\cdot CD}\\[1ex]
&=\frac {(2\cdot BC+3\cdot CD)^2}{16\cdot BC\cdot CD}\\[1ex]
&=\frac {BC}{4\cdot CD}+\frac {9\cdot CD}{16\cdot BC}+\frac {3}4\\[1ex]
&\geqslant 2\sqrt {\frac 14\cdot \frac 9{16}}+\frac {3}4\\[1ex]
&=\frac 32.
\end{align*}

取“=”时,$AB\cdot CD=BC\cdot DA$即调和四边形$ABCD$.




========



(2)

实际在四边形$ABCD$中
\[36^\circ=\angle A=\frac 12\angle B=\frac 13\angle C=\frac 14\angle D.\]

连接$AC$,记$\angle BAC=x,\angle DAC=y$,则$x+y=36^\circ$.

在$\triangle ABC$中由正弦定理易知
\[BC=\frac {AC\cdot \sin x}{\sin B},\]
同理在$\triangle ACD$中有
\[CD=\frac {AC\cdot \sin y}{\sin D}=\frac {AC\cdot \sin y}{\sin B}.\]

从而
\begin{align*}
\lambda&=\frac {AC^2}{BC\cdot CD}\\[1ex]
&=\frac {AC^2}{\frac {AC\cdot \sin x}{\sin B}\cdot \frac {AC\cdot \sin y}{\sin B}}\\[1ex]
&=\frac {\sin^2 72^\circ}{\sin x\sin y}\\[1ex]{}
\xlongequal[\text{积化和差}]{}&=\frac {2\sin^2 72^\circ}{-\cos 36^\circ+\cos (x-y)}\\[1ex]
&\geqslant \frac {2\sin^2 72^\circ}{-\cos 36^\circ+\color{red}{1}}\\[1ex]
&=\frac {2\sin^2 72^\circ}{2\sin^2 18^\circ}\\[1ex]
&=\tan^2 72^\circ=\frac 1{\tan^2 18^\circ}\\[1ex]
&=5+2\sqrt 5.
\end{align*}

取“=”时,$x=y=18^\circ$,即$AB$为圆的直径.

========

关于 sin 18度 的求法 1求法 2

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2022-2-25 17:22
奇怪,mathjax 的 \xlongequal 有 bug
  1. \begin{align*}
  2. \xlongequal[\text{积化和差}]{}&=c
  3. \end{align*}
  4. \begin{align*}
  5. a&=b\\
  6. \xlongequal[\text{积化和差}]{}&=c
  7. \end{align*}
  8. \begin{align*}
  9. a&=b\\
  10. {}\xlongequal[\text{积化和差}]{}&=c
  11. \end{align*}
Copy the Code
\begin{align*}
\xlongequal[\text{积化和差}]{}&=c
\end{align*}
\begin{align*}
a&=b\\
\xlongequal[\text{积化和差}]{}&=c
\end{align*}
\begin{align*}
a&=b\\
{}\xlongequal[\text{积化和差}]{}&=c
\end{align*}

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

 Author| isee Posted 2022-2-25 18:07
回复 3# kuing


随意随意,哈哈哈哈哈,看不习惯我就直接去掉~何况只需要加个花括号“断开”

Mobile version|Discuz Math Forum

2025-5-31 10:38 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit