Forgot password
 Register account
View 326|Reply 3

级数与积分

[Copy link]

3219

Threads

7838

Posts

52

Reputation

Show all posts

hbghlyj posted 2022-3-2 23:57 |Read mode
Last edited by hbghlyj 2022-10-16 23:44Sophomore's dream
''二年级之梦''是一对恒等式(尤其是第一个) \begin{align}\label1 \int_0^1 x^{-x}\,dx &= \sum_{n=1}^\infty n^{-n} \\ \end{align}\begin{align} \int_0^1 x^x \,dx &= \sum_{n=1}^\infty (-1)^{n+1}n^{-n} = - \sum_{n=1}^\infty (-n)^{-n} \end{align}1697 年由 Johann Bernoulli 发现。 这些常数的数值约为 1.291285997... 和 0.7834305107...

3219

Threads

7838

Posts

52

Reputation

Show all posts

original poster hbghlyj posted 2022-3-3 00:05
Last edited by hbghlyj 2022-7-1 20:25两个恒等式的证明完全类似,所以这里只给出第二个恒等式的证明。
证明的主要成分是:
  • 将$x^x$写成$\exp(x\ln x)$
  • 使用$\exp x$的幂级数,展开$\exp(x\ln x)$
  • 逐项积分,使用换元积分法.


具体来说,$$x^x = \exp(x \log  x) = \sum_{n=0}^\infty \frac{x^n(\log  x)^n}{n!}.$$所以$$\int_0^1 x^x\,dx =  \int_0^1 \sum_{n=0}^\infty \frac{x^n(\log  x)^n}{n!} \,dx.$$由幂级数的一致收敛性,可以交换积分与求和的次序:$$\int_0^1 x^x\,dx = \sum_{n=0}^\infty \int_0^1 \frac{x^n(\log  x)^n}{n!} \,dx. $$使用换元积分法:$x=\exp\left(-\frac{u}{n+1}\right).$$$0 < u < \infty,$$从而$$\int_0^1 x^n(\log x)^n\,dx = (-1)^n (n+1)^{-(n+1)}  \int_0^\infty u^n  e^{-u}\,du.$$
由Gamma函数的性质$\int_0^\infty u^n e^{-u}\,du=n!$故$$\int_0^1 \frac{x^n (\log  x)^n}{n!}\,dx
= (-1)^n (n+1)^{-(n+1)}.$$将这些相加(并更改下限值,使其从 $n = 1$ 开始,而不是 $n = 0$) 就得到公式\eqref{1}

3219

Threads

7838

Posts

52

Reputation

Show all posts

original poster hbghlyj posted 2022-7-2 03:22

24

Threads

1017

Posts

46

Reputation

Show all posts

战巡 posted 2022-7-3 13:10

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-21 12:13 GMT+8

Powered by Discuz!

Processed in 0.013158 seconds, 24 queries