Forgot password?
 Create new account
View 211|Reply 2

[几何] 调和四边形 ∠BMC=∠DMC

[Copy link]

3147

Threads

8493

Posts

610K

Credits

Credits
66163
QQ

Show all posts

hbghlyj Posted at 2022-3-15 17:55:40 |Read mode
这里维基百科的性质2:
圆内接四边形ABCD满足AB·CD=AD·BC,M为CA中点,求证∠BMC=∠DMC

3147

Threads

8493

Posts

610K

Credits

Credits
66163
QQ

Show all posts

 Author| hbghlyj Posted at 2022-3-15 17:59:31
复数法:

设$ABCD$内接于单位圆,$m=\frac{a+c}2$,
由$AB·CD=AD·BC$得$|a-b||c-d|=|a-d||b-c|$,
由$ABCD$内接于圆得$\operatorname{arg}(a-b)+\operatorname{arg}(c-d)=\operatorname{arg}(a-d)+\operatorname{arg}(b-c)$,
所以$(a-b)(c-d)=(a-d)(b-c)$,
展开得$-a b + 2 a c - b c - a d + 2 b d - c d=0$,
整理得$\frac{m-b}{m-c}={m-c\over m-d}$,所以$\angle BMC=\angle DMC$.
(由这个式子还可得$AM·MC=BM·MD$,这也是一条直线上的调和点列的性质:若$AC$调和分割$BD$,$M$为$AC$中点,则$AM·MC=BM·MD$.其实调和四边形的四个顶点的复交比为-1,而调和点列是它的特殊情况)

3147

Threads

8493

Posts

610K

Credits

Credits
66163
QQ

Show all posts

 Author| hbghlyj Posted at 2022-3-15 22:26:04
Last edited by hbghlyj at 2024-11-3 09:26:00BACDM因为BD是类似中线,所以$\angle CBM=\angle ABD=\angle MCD$,同理$\angle BCM=\angle CDM=\angle BDA$,所以$\triangle ABD\sim\triangle MBC\sim\triangle MCD$,所以$MC^2=MB·MD$.

手机版Mobile version|Leisure Math Forum

2025-4-20 22:16 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list