Forgot password
 Register account
View 261|Reply 0

给定$n$阶实矩阵$A=(a_{ij})$,求$s=n(A)$的条件。

[Copy link]

414

Threads

1641

Posts

15

Reputation

Show all posts

abababa posted 2022-3-20 16:19 |Read mode
给定$n$阶实矩阵$A=(a_{ij})$,定义$n(A)=\sum_{i,j}\abs{a_{ij}}$,对$n$维实向量$x=(x_1,\cdots,x_n)^T\in\mathbb{R}^n$定义$\rho(x)=\sum_{i=1}^{n}\abs{x_i}$。定义$s=\inf\{m:\rho(Ax)\le m\rho(x),\forall x\in\mathbb{R}^n\}$,求证$s\le n(A)$,并说明什么情况下取等号。

\begin{align*}
\rho(Ax)
&=\sum_{i=1}^{n}\abs{\sum_{j=1}^{n}a_{ij}x_j}
\le\sum_{i=1}^{n}\left(\sum_{j=1}^{n}\abs{a_{ij}}\abs{x_j}\right)\\
&\le\sum_{i=1}^{n}\left[\left(\sum_{j=1}^{n}\abs{a_{ij}}\right)\left(\sum_{j=1}^{n}\abs{x_j}\right)\right]
=\left(\sum_{j=1}^{n}\abs{x_j}\right) \cdot \left(\sum_{i=1}^{n}\sum_{j=1}^{n}\abs{a_{ij}}\right)\\
&=n(A)\rho(x)
\end{align*}

所以$s\le n(A)$,等号什么时候能取到呢?是上式那些不等号全都取等时吗?如果是的话,那些不等式要怎么才能取等?

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-23 12:35 GMT+8

Powered by Discuz!

Processed in 0.011610 seconds, 22 queries