Forgot password?
 Create new account
View 382|Reply 3

[几何] 向量模的最值

[Copy link]

276

Threads

691

Posts

6120

Credits

Credits
6120

Show all posts

力工 Posted at 2022-4-2 18:06:23 |Read mode
请大家来攻这道向量题。
平面向量$\bm{a},\bm{b},\bm{c}$满足$|\bm{a}|=1,\bm{b}\cdot \bm{c}=0,|2\bm{b}+2\bm{c}-\bm{a}|=1$,求$|\bm{a}-\bm{b}|$的最大值。

Related collections:

701

Threads

110K

Posts

910K

Credits

Credits
94172
QQ

Show all posts

kuing Posted at 2022-4-6 01:03:05
注意到
\[(\bm a-\bm b)^2=\bm a^2-4\bm b\cdot\bm c+\frac13(2\bm b+2\bm c-\bm a)^2-\frac13(\bm a+\bm b-2\bm c)^2,\]
代入条件即得
\[(\bm a-\bm b)^2=\frac43-\frac13(\bm a+\bm b-2\bm c)^2\leqslant\frac43,\]
取等懒得算了

701

Threads

110K

Posts

910K

Credits

Credits
94172
QQ

Show all posts

kuing Posted at 2022-4-6 22:58:31
几何解法补一个:
捕获.PNG
如上图,设小圆半径为 `r`,则
\begin{align*}
AB&\leqslant AN+r\\
&=\sqrt{r^2+AM^2}+r\\
&=\sqrt{r^2+1-(2r)^2}+r\\
&=\frac{\sqrt{(4-1)(1-3r^2)}}{\sqrt3}+r\\
&\leqslant\frac{2-\sqrt3r}{\sqrt3}+r\\
&=\frac2{\sqrt3}.
\end{align*}

134

Threads

760

Posts

5439

Credits

Credits
5439

Show all posts

走走看看 Posted at 2022-4-19 17:37:15
Last edited by 走走看看 at 2022-4-19 17:53:00回复 2# kuing


这种配方很赞!

设 $(a-b)^2=k*a^2+l*bc+m(2b+2c-a)^2+p△^2 $

然后,逐步猜出 k、l、m、p以及△中的项,很巧妙啊!

手机版Mobile version|Leisure Math Forum

2025-4-20 22:04 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list