Forgot password?
 Create new account
View 215|Reply 3

$f(x)$是$[0,1]$上的连续函数,则$\{f(r_n)\}$是否线性无关

[Copy link]

418

Threads

1628

Posts

110K

Credits

Credits
11891

Show all posts

abababa Posted at 2022-4-3 22:42:53 |Read mode
Last edited by abababa at 2022-4-3 22:51:00设$[0,1]$中的全体有理数为$\{r_n\}$,再设$f(x)$是$[0,1]$上的连续函数,则$\{f(r_n)\}$是否线性无关?即是否对任意有限数$k$,都有
\[a_1f(r_1)+\cdots+a_kf(r_k)\Rightarrow a_1=\cdots=a_k=0\]

$f(x)$是零函数时一定相关,除此之外的情况呢?

48

Threads

969

Posts

110K

Credits

Credits
14870
QQ

Show all posts

Czhang271828 Posted at 2022-4-8 15:27:02
反证吧, 设存在非零数组 $\{a_k\}_{k=1}^n$ 使得 $\sum_{k=1}^n a_kf(r_k)\equiv 0$, 则可以构造连续函数 $f$ 使得 $f(r_k)=-\dfrac{1}{a_k}$, $k=1,2,\ldots, n$. 从而矛盾.

418

Threads

1628

Posts

110K

Credits

Credits
11891

Show all posts

 Author| abababa Posted at 2022-4-8 17:39:16
回复 2# Czhang271828

谢谢,但题里问的这个$f(x)$不能是构造出来的吧,而是对任意的$f(x)\in C[0,1]$,问哪一类能使$\{f(r_n)\}$线性无关。2楼构造出来的这一类能线性无关,但除此之外不一定线性相关。

48

Threads

969

Posts

110K

Credits

Credits
14870
QQ

Show all posts

Czhang271828 Posted at 2022-4-10 08:56:03
回复 3# abababa

个人理解的表述是: 是否存在有限数组 $\{(a_k,r_k)\}_{k=1}^N$ 使得 $\sum_{k=1}^N a_k f(r_k)\equiv 0$ 对所有 $f\in C([0,1])$ 一致地成立.

二楼用反证法, 出现反例即代表不对所有 $f\in C([0,1])$ 一致地成立.

手机版Mobile version|Leisure Math Forum

2025-4-21 14:41 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list