Forgot password?
 Register account
View 492|Reply 6

一道极坐标系下双重积分的题,感觉答案不对

[Copy link]

3

Threads

9

Posts

68

Credits

Credits
68

Show all posts

PIG Posted 2022-4-10 19:37 |Read mode
Last edited by PIG 2022-4-11 16:00如题
$$\iint_D\sqrt{R^2-x^2-y^2}dσ$$
其中,D是由圆周$x^2+y^2=Rx$所围成的区域。
将其转化为极坐标系形式为:
$$\int_\frac{-\pi}{2}^\frac{\pi}{2}d\theta\int_{0}^{Rcos\theta}\sqrt{R^2-r^2}r dr$$
我自己算出来结果是 $\frac{\pi R^3}{3}$,而答案给的是$\frac{R^3}{3}\left(\pi-\frac{4}{3}\right)$
用了mathmatica跑了一段,结果奇奇怪怪的,很长一串。有大佬来帮忙看看吗?

411

Threads

1618

Posts

110K

Credits

Credits
11808

Show all posts

abababa Posted 2022-4-10 20:30
Last edited by abababa 2022-4-10 20:36回复 1# PIG

这个不是能分开算吗?先换元$r=R\sin(x)$,这样$x=\arcsin(\frac{r}{R}),dr=R\cos xdx$,所以
\[\int_{0}^{R}\sqrt{R^2-r^2}dr=\int_{0}^{\frac{\pi}{2}}R^2\cos^2xdx=R^2\left[\frac{\sin x\cos x+x}{2}\right]_{0}^{\frac{\pi}{2}}=\frac{\pi R^2}{4}\]

然后
\[\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}d\theta\cos\theta\cdot\frac{\pi R^2}{4}=\frac{\pi R^2}{2}\]

哦,我明白了,少看了一个$r$。换元$x=R^2-r^2$,这样就有$dr=\frac{-1}{2r}dx$,所以
\[\int_{0}^{R}\sqrt{R^2-r^2}rdr=-\frac{1}{2}\int_{R^2}^{0}\sqrt{x}dx=\frac{R^3}{3}\]

然后还是
\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}d\theta\cos\theta\cdot\frac{R^3}{3}=\frac{2R^3}{3}

3

Threads

9

Posts

68

Credits

Credits
68

Show all posts

 Author| PIG Posted 2022-4-11 14:51
回复 2# abababa

不好意思,我这个题目打错了,cosθ是在积分上限里面的,不能分开算,话说这里LaTex里积分上限只能识别第一个字符么还是怎么滴,我一开始没注意

768

Threads

4685

Posts

310K

Credits

Credits
35004

Show all posts

isee Posted 2022-4-11 15:57
回复 3# PIG


现在是正常的,不止一个字母时,需要{},另外,余弦符号就像 \alpha 一样要加 反斜杠 \cos

其实所有的数学专用名词都要加反斜杠 \

24

Threads

1010

Posts

110K

Credits

Credits
12655

Show all posts

战巡 Posted 2022-4-11 16:07
回复 3# PIG

答案没错啊

\[\int_0^{R\cos(\theta)}r\sqrt{R^2-r^2}dr=-\frac{1}{3}(R^2-r^2)^{\frac{3}{2}}|_0^{R\cos(\theta)}=\frac{1}{3}[(R^2)^{\frac{3}{2}}-(R^2-R^2\cos^2(\theta))^{\frac{3}{2}}]\]
\[=\frac{1}{3}[R^3-(R^2\sin^2(\theta))^{\frac{3}{2}}]=\frac{R^3}{3}[1-|\sin(\theta)|^3]\]
我估计你问题就出在这里,这个$(\sin^2(\theta))^{\frac{3}{2}}$如果直接就变成了$\sin^3(\theta)$,是要出问题的

\[\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}d\theta\int_0^{R\cos(\theta)}r\sqrt{R^2-r^2}dr\]
\[=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\frac{R^3}{3}[1-|\sin(\theta)|^3]d\theta\]
\[=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\frac{R^3}{3}d\theta-\frac{R^3}{3}\int_{-\frac{\pi}{2}}^0(-\sin^3(\theta))d\theta-\frac{R^3}{3}\int_0^{\frac{\pi}{2}}\sin^3(\theta)d\theta\]
\[=\frac{\pi R^3}{3}-\frac{R^3}{3}\cdot\frac{2}{3}-\frac{R^3}{3}\cdot\frac{2}{3}=\frac{R^3}{3}(\pi-\frac{4}{3})\]

而且mathematica给出的结果也是这样啊,并不会一长串,不知道你代码怎么写的
p0170.png

Rate

Number of participants 1威望 +1 Collapse Reason
isee + 1

View Rating Log

3

Threads

9

Posts

68

Credits

Credits
68

Show all posts

 Author| PIG Posted 2022-4-11 23:57
嗯,就是这个低级错误,我也感觉到了应该是个低级错误,谢谢啦

3

Threads

9

Posts

68

Credits

Credits
68

Show all posts

 Author| PIG Posted 2022-4-12 00:48
回复 4# isee


    嗯,是的,而且打积分上下限的时候如果只打一个花括号不行,必须上下限两个一起打才可以,要不就不打,只识别第一个字符。

Mobile version|Discuz Math Forum

2025-6-5 07:37 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit