Forgot password?
 Register account
View 369|Reply 5

$\int_0^1x(1-x^4)^{\frac 32}\mathrm dx$——绕圈子了吧

[Copy link]

768

Threads

4685

Posts

310K

Credits

Credits
35004

Show all posts

isee Posted 2022-4-19 20:10 |Read mode
源自知乎提问


感觉解麻烦了,绕了个大圈~



: $\int_0^1x(1-x^4)^{\frac 32}\mathrm dx$.

解得很“笨”先干掉根号,再三角代换.

作置换 $x\mapsto (1+x^2)^{-\frac 14}$

\begin{align*} &\quad\int_0^1x(1-x^4)^{\frac 32}\mathrm dx\\[1em] &=\int_{+\infty}^0 (1+x^2)^{-\frac 14}\cdot x^3(1+x^2)^{-\frac 32}\cdot \bigg(-\frac 14(1+x^2)^{-\frac 54}\cdot 2x\bigg)\mathrm dx\\[1em] &=\frac 12\int_0^{+\infty}\frac {x^4}{(1+x^2)^3}\mathrm dx\\[1em] {}\xlongequal{x\mapsto \tan x}&=\frac 12\int_0^{\frac \pi2}\frac {\tan^4 x}{\sec^6x}\cdot \sec^2x\mathrm dx\\[1em] &=\frac 12\int_0^{\frac \pi2}\sin^4 x\mathrm dx\\[1em] {}\xlongequal{\rm{Wallis}}&=\frac 12\cdot \frac {3!!}{4!!}\cdot \frac \pi2\\[1em] &=\frac {3\pi}{32}. \end{align*}

83

Threads

434

Posts

5419

Credits

Credits
5419

Show all posts

tommywong Posted 2022-4-19 20:43
$x^2=t=\sin\theta,~dt=\cos\theta d\theta$

$\displaystyle \int_0^1 x(1-x^4)^{\frac{3}{2}} dx$
$\displaystyle =\frac{1}{2}\int_0^1 (1-x^4)^{\frac{3}{2}} d(x^2)$
$\displaystyle =\frac{1}{2}\int_0^1 (1-t^2)^{\frac{3}{2}} dt$
$\displaystyle =\frac{1}{2}\int_0^{\frac{\pi}{2}} \cos^4\theta d\theta$
$\displaystyle =\frac{1}{8}\int_0^{\frac{\pi}{2}} (1+\cos 2\theta)^2 d\theta$
$\displaystyle =\frac{1}{16}\int_0^{\frac{\pi}{2}} (3+4\cos 2\theta+\cos 4\theta) d\theta$
$\displaystyle =\frac{3\pi}{32}$

Rate

Number of participants 1威望 +1 Collapse Reason
isee + 1 thx

View Rating Log

768

Threads

4685

Posts

310K

Credits

Credits
35004

Show all posts

 Author| isee Posted 2022-4-19 20:57
回复 2# tommywong

用一个align* 环境多省事.

不用手动全部 displaystyle.

24

Threads

1010

Posts

110K

Credits

Credits
12655

Show all posts

战巡 Posted 2022-4-19 21:31
回复 1# isee

令$x^4=y$,则有
\[\int_0^1x(1-x^4)^{\frac{3}{2}}dx=\int_0^1y^{\frac{1}{4}}(1-y)^{\frac{3}{2}}dy^{\frac{1}{4}}=\frac{1}{4}\int_0^1y^{-\frac{1}{2}}(1-y)^{\frac{3}{2}}dy\]
\[=\frac{1}{4}B(\frac{1}{2},\frac{5}{2})=\frac{1}{4}\frac{\Gamma(\frac{1}{2})\Gamma(\frac{5}{2})}{\Gamma(3)}=\frac{3\pi}{32}\]

Rate

Number of participants 1威望 +1 Collapse Reason
isee + 1 thx

View Rating Log

768

Threads

4685

Posts

310K

Credits

Credits
35004

Show all posts

 Author| isee Posted 2022-4-19 22:03
Last edited by isee 2022-4-19 22:10回复 4# 战巡


$B(\frac 12,\frac 52)$ 什么来着?还是二项分布么?划掉了,应该是 Beta 函数.

768

Threads

4685

Posts

310K

Credits

Credits
35004

Show all posts

 Author| isee Posted 2022-4-19 22:58
Last edited by isee 2022-4-19 23:09回复 4# 战巡


好强,模仿样子,如求定积分
\begin{align*}
&\quad\int_0^1 x^2\sqrt {1-x^2}\mathrm dx\\[1em]
{}\xlongequal{x^2{~}\mapsto {~}y}&=\int_0^1 y(1-y)^{\frac 12}\cdot \left(\frac 12 y^{-\frac 12}\right)\mathrm dy\\[1em]
&=\frac 12\int_0^1 y^{\frac 12}(1-y)^{\frac 12}\mathrm dy\\[1em]
&=\frac 12B\big(\frac 32,\frac 32\big)\\[1em]
&=\frac 12\frac {\Gamma(3/2)\cdot \Gamma(3/2)}{\Gamma(3)}\\[1em]
&=\frac {\pi}{16}.
\end{align*}

Mobile version|Discuz Math Forum

2025-6-5 18:37 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit