Forgot password
 Register account
View 257|Reply 1

求证$\{\sqrt{\frac{2}{\pi}}\sin nt\}$是不是正交基。

[Copy link]

414

Threads

1641

Posts

15

Reputation

Show all posts

abababa posted 2022-4-26 10:52 |Read mode
$\{\sqrt{\frac{2}{\pi}}\sin nt\}$是$L^2[0,2\pi]$的正交基吗?是$L^2[-\pi,\pi]$的正交基吗?

正交是显然的。我知道对于$f\in L^2[0,\pi]$,它可以奇延拓到$L^2[-\pi,\pi]$上的$g$,然后我已知$\{\sqrt{\frac{1}{2\pi}}e^{int}\}$是$L^2[-\pi,\pi]$上的标准正交基,把$g$展开成傅立叶级数,它只含$\sin nx$的项,而$f=\frac{g(x)-g(-x)}{2}$,这样就把$f$展开成傅立叶级数了,结果是
\[f(x)=\frac{2}{\pi}\sum_{n=1}^{\infty}\left(\int_{0}^{\pi}f(t)\sin(nt)dt\right)\sin(nx)\]

所以$\{\sqrt{\frac{2}{\pi}}\sin nt\}$是$L^2[0,\pi]$的正交基。那它是不是$L^2[0,2\pi]$和$L^2[-\pi,pi]$的正交基呢?

414

Threads

1641

Posts

15

Reputation

Show all posts

original poster abababa posted 2022-4-26 15:49
回复 1# abababa

会了。就用$f(x)=\abs{x}$,然后在$L^2[-\pi,\pi]$上
\[\int_{-\pi}^{\pi}\abs{x}\sin nxdx=0\]
所以这个$f(x)=\abs{x}$和所有$\sin nx$都垂直,这样$\{\sin nx\}^{\perp}\neq\{0\}$,所以$\{\sin nx\}$就不能是$L^2[-\pi,\pi]$上的正交基。平移这个函数使对称轴是$x=\pi$,就得到$\{\sin nx\}$也不能是$L^2[0,2\pi]$上的正交基。

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-21 05:38 GMT+8

Powered by Discuz!

Processed in 0.071490 seconds, 22 queries