Forgot password?
 Create new account
View 177|Reply 6

不参数化能求线积分吗?

[Copy link]

418

Threads

1628

Posts

110K

Credits

Credits
11891

Show all posts

abababa Posted at 2022-4-28 14:08:30 |Read mode
比如这个
\[\int_{\abs{z}=1}\frac{z}{z+1/2}dz\]

Integrate[z/(z+1/2)/.z->E^(I*t),{t,0,2Pi}]

不参数化有没有直接求的方法?

3146

Threads

8493

Posts

610K

Credits

Credits
66158
QQ

Show all posts

hbghlyj Posted at 2022-4-28 19:32:13
In[1]:=
      Integrate[z/(z + 1/2) I z /. z -> E^(I*t), {t, 0, 2 Pi}]
Out[1]:=
      $-i \pi$
In[2]:=
      2 Pi I * Residue[z/(z + 1/2), {z, -1/2}]
Out[2]:=
      $-i \pi$

418

Threads

1628

Posts

110K

Credits

Credits
11891

Show all posts

 Author| abababa Posted at 2022-4-29 08:20:09
回复 3# hbghlyj

是的,我忘了乘$dz$换元后微分的那个因子了。不用留数或参数化能算吗?就像普通积分那样的。

3146

Threads

8493

Posts

610K

Credits

Credits
66158
QQ

Show all posts

hbghlyj Posted at 2022-4-29 09:03:26
回复 3# abababa

参考一下
mathematica.stackexchange.com/questions/36961 … in-the-complex-plane
In[1]:=
      $\text{Integrate}\left[\frac{z}{z+\frac{1}{2}},\left\{z,2,2(-1)^{2/3},2 (-1)^{4/3},2\right\}\right]$
Out[1]:=
      $-i\pi$

3146

Threads

8493

Posts

610K

Credits

Credits
66158
QQ

Show all posts

hbghlyj Posted at 2022-4-29 09:07:49
这样吗
\begin{aligned}&\int_{\abs{z}=1}\frac{z}{z+1/2}dz\\
=&\left.z - \frac12\log(1 + 2 z)\right|_0^{2π}\\
=&0-\frac12(2iπ)\\
=&-iπ\end{aligned}

418

Threads

1628

Posts

110K

Credits

Credits
11891

Show all posts

 Author| abababa Posted at 2022-4-29 10:16:47
回复 4# hbghlyj

这个更不够直观了。我想有没有直接的形式,比如Integrate[z/(z+1/2),{z,1,Circle}]什么的。

Comment

ResidueSum  Posted at 2023-6-2 16:10

手机版Mobile version|Leisure Math Forum

2025-4-20 22:00 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list