Forgot password?
 Create new account
View 1411|Reply 3

$i^i$的实虚性

[Copy link]

462

Threads

969

Posts

9934

Credits

Credits
9934

Show all posts

青青子衿 Posted at 2013-11-16 13:47:51 |Read mode
搜狗截图_2013-11-16_13-45-56.jpg

25

Threads

1020

Posts

110K

Credits

Credits
12672

Show all posts

战巡 Posted at 2013-11-16 14:11:56
这有意思么........
\[i=e^{\frac{\pi}{2}i}\]
\[i^i=e^{\frac{\pi}{2}i^2}=e^{-\frac{\pi}{2}}\]

7

Threads

53

Posts

398

Credits

Credits
398

Show all posts

icesheep Posted at 2013-11-16 18:21:04
\[{a^b} = {e^{b{\text{Ln}}a}}\]

考虑 $Lna$ 时,注意其作为指数函数的反函数,由于指数函数在 C 上不是单射(单叶),所以是多值的。

\[Lni = \ln 1 + i\left( {\frac{\pi }{2} + 2k\pi } \right) = i\left( {\frac{\pi }{2} + 2k\pi } \right)\]

462

Threads

969

Posts

9934

Credits

Credits
9934

Show all posts

 Author| 青青子衿 Posted at 2014-1-19 19:17:13
tieba.baidu.com/p/2114444560
说到底就是利用复数的指数形式!

手机版Mobile version|Leisure Math Forum

2025-4-20 21:58 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list