|
乌贼
Posted 2022-5-26 18:59
Last edited by 乌贼 2022-5-26 20:26如图:
先证\[ \angle KBF=\angle ACD \]
作$ FN\px AC $交$ AB $于$ N $,$ DM\px BK $交$ CK $于$ M $,作$ KH\px EG $分别交$ FN,AB $于$ L,H $。有$ KBNF,FNDM,MDAC $三组四点共圆,得\[ \angle DMN=\angle DFN=\angle FLK\riff \triangle LFK\sim \triangle MDN\riff \dfrac{FL}{FK}=\dfrac{DM}{DN} \]又\[ \angle NDF=\dfrac{1}{2}\angle BAC=\dfrac{1}{2}\angle BNF\riff FN=ND \]又有\[ FL=DH=DA \]所以有\[ \dfrac{DA}{FK}=\dfrac{DM}{FN}\riff \triangle NFK\sim \triangle MDA\riff \angle KBF=\angle KNF=\angle DMA=\angle ACD \]
再证\[ \angle ABE=\angle KCG \]分别取$ AF,DG $中点$ P,Q $,有\[ \angle DBQ=\angle BDQ=\angle ADE=\angle AED=\angle ACP \]故$ AQBE $四点共圆,$ ADPMC $五点共圆
同理$ KPCG $四点共圆,$ BNQFK $五点共圆,因此\[ \angle APD=\angle ACD=\angle KBF=\angle KQG\riff \triangle AOP\cong \triangle BOQ \]即$ APKQ $为平行四边形,所以\[ \angle ABE=\angle AQE=\angle KPG=\angle KCG \]综上得\[ \angle EBF=\angle DCG \] |
|