找回密码
 快速注册
搜索
查看: 117|回复: 2

[数论] 线性不定方程 非负解

[复制链接]

3149

主题

8386

回帖

6万

积分

$\style{scale:11;fill:#eff}꩜$

积分
65391
QQ

显示全部楼层

hbghlyj 发表于 2022-6-7 04:42 |阅读模式
本帖最后由 hbghlyj 于 2023-2-14 16:53 编辑 《简明数论》63页 习题八

7. 设 $a_{1}, a_{2}, c$ 是正整数, $\left(a_{1}, a_{2}\right)=1$. 对于方程 $a_{1} x_{1}+a_{2} x_{2}=c$ 有以下结论:
(i) $c<a_{1}+a_{2}$ 时一定没有正解;
(ii) 全体非负解和全体正解相同的充要条件是 $a_{1} \nmid c$ 且 $a_{2} \nmid c$;
(iii) 若 $a_{1} \mid c, a_{1} a_{2} \nmid c$, 则正解的个数等于 $\left[c /\left(a_{1} a_{2}\right)\right]$;
(iv) 若 $a_{1} a_{2} \mid c$, 则正解个数等于 $-1+c /\left(a_{1} a_{2}\right)$.
8. 设 $a_{1}, a_{2}, a_{3}$ 是两两既约的正整数. 证明:不定方程 $a_{2} a_{3} x_{1}+a_{3} a_{1} x_{2}+a_{1} a_{2} x_{3}=c$,
(1)当 $c>2 a_{1} a_{2} a_{3}-a_{1} a_{2}-a_{2} a_{3}-a_{3} a_{1}$ 时一定有非负解;
(2)当 $c=2 a_{1} a_{2} a_{3}-a_{1} a_{2}-a_{2} a_{3}-a_{3} a_{1}$ 时无非负解.
────────────────────────────────────────────────────
7. (i) 若$a_1,a_2⩾1$,则$c=a_{1} x_{1}+a_{2} x_{2}⩾x_1+x_2$.
(ii) $a_1=0⇒a_2x_2=c⇒a_2\mid c$.
(iii)由$a_1\mid c$知$\left(\frac c{a_1},0\right)$是一组解. 由定理3知,通解为$\cases{x_1=\frac c{a_1}-a_2t\\x_2=a_1t}$
$x_1,x_2>0⇔t<\frac c{a_1a_2}∧t>0$. 又$a_1a_2\nmid c$, 因此$t=1,2,⋯,\left[c\over a_1a_2\right]$, 正解个数等于 $\left[c\over a_1a_2\right]$.
(iv)通解和(iii)相同,同样有$x_1,x_2>0⇔t<\frac c{a_1a_2}∧t>0$.
又$a_1a_2\mid c$,因此$t=1,2,⋯,{c\over a_1a_2}-1$, 正解个数等于 ${c\over a_1a_2}-1$.
8.(1)$a_1,a_2,a_3$两两既约, 所以存在一组整数解 $x_{1}^{0}, x_{2}^{0}, x_{3}^{0}$, 任意一组整数解 $x_{1}, x_{2}, x_{3}$ 必满足$$a_{2} a_{3}\left(x_{1}-x_{1}^{0}\right)+a_{3} a_{1}\left(x_{2}-x_{2}^{0}\right)+a_{1} a_{2}\left(x_{3}-x_{3}^{0}\right)=0$$因此,$a_{1} \mid x_{1}-x_{1}^{0}$, $a_{2}\left|x_{2}-x_{2}^{0}, a_{3}\right| x_{3}-x_{3}^{0}$, 即有$$\array{x_{1}=x_{1}^{0}+a_{1} t_{1}\\ x_{2}=x_{2}^{0}+a_{2} t_{2}\\ x_{3}=x_{3}^{0}+a_{3} t_{3}\\t_{1}+t_{2}+t_{3}=0}$$若有非负解, 那么, 当 $x_{2}, x_{3}$ 取最小非负值时, $x_{1}$ 的值必为非负.
[注意,只要确定$t_1,t_2,t_3$中的两个,就确定了第三个,也就确定了一组整数解$(x_1,x_2,x_3)$.]
所以取 $t_{2}, t_{3}$ 使\begin{gathered}0 \leqslant x_{2}=x_{2}^{0}+a_{2} t_{2} \leqslant a_{2}-1\\0 \leqslant x_{3}=x_{3}^{0}+a_{3} t_{3} \leqslant a_{3}-1\end{gathered}得到\begin{aligned}a_{2} a_{3}x_1&=c-a_3a_1x_2-a_1a_2x_3\\
&⩾c-a_3 a_1 \left(a_2-1\right)-a_1 a_2 \left(a_3-1\right)\\
&=c-2 a_{1} a_{2} a_{3}+a_{3} a_{1}+a_{1} a_{2}\end{aligned}由此就推出当 $c>2 a_{1} a_{2} a_{3}-a_{1} a_{2}-a_{2} a_{3}-a_{3} a_{1}$ 时, $x_{1}>-1$, 即必有非负解.
(2)当 $c=2 a_{1} a_{2} a_{3}-a_{1} a_{2}-a_{2} a_{3}-a_{3} a_{1}$ 时, 若有非负解 $x_{1}$, $x_{2}, x_{3}$, 则$$a_{2} a_{3}\left(x_{1}+1\right)+a_{3} a_{1}\left(x_{2}+1\right)+a_{1} a_{2}\left(x_{3}+1\right)=2 a_{1} a_{2} a_{3}$$由此推出 $$a_{1}\left|x_{1}+1 \geqslant a_{1}, a_{2}\right| x_{2}+1 \geqslant a_{2}, a_{3} \mid x_{3}+1 \geqslant a_{3}$$代入上式,$$2a_1a_2a_3⩾3a_1a_2a_3$$矛盾.


(1)的另证:
由定理3, 这个不定方程等价于4个变数,2个方程的不定方程组\begin{cases}a_3y+a_{1} a_{2} x_{3}=c&①\\
a_{2}x_{1}+a_{1} x_{2}=y&②\end{cases}若$c>2 a_{1} a_{2} a_{3}-a_{1} a_{2}-a_{2} a_{3}-a_{3} a_{1}$,
因为$2 a_{1} a_{2} a_{3}-a_{1} a_{2}-a_{2} a_{3}-a_{3} a_{1}=(a_1a_2a_3-a_1a_2-a_3)+\underbrace{(a_1-1) (a_2-1) a_3}_{⩾0}$
所以$c>a_1a_2a_3-a_1a_2-a_3$. 由定理4, 不定方程①一定有非负解$(x_{3,0},y_0)$.
作带余除法$x_{3,0}=a_3t+x_{3,1},0⩽x_{3,1}<a_3,t⩾0$,
令$y_1=y_0+a_1a_2t$,则 $(x_{3,1},y_1)$是不定方程①的非负解.
我们有$$x_{3,1}⩽a_3-1\implies2 a_1 a_2 a_3 - a_1 a_2 - a_2 a_3 - a_3 a_1 ⩾ a_3 (a_1 a_2 - a_1 - a_2) + a_1 a_2 x_{3,1}$$
而$$c>2 a_1 a_2 a_3 - a_1 a_2 - a_2 a_3 - a_3 a_1$$
所以$$c>a_3 (a_1 a_2 - a_1 - a_2) + a_1 a_2 x_{3,1}$$
因此$$y_1=\frac{c-a_1a_2x_{3,1}}{a_3}>a_1a_2-a_1-a_2$$由定理4, 不定方程②一定有非负解$(x_{1,1},x_{2,1})$, 因此$(x_{1,1},x_{2,1},x_{3,1})$是原不定方程的一组非负解.






PS:
发现Chrome的内置pdf阅读器,缩放到25%就不能再小了...
发现$a|b$ (a|b)和$a\mid b$ (a\mid b)效果不一样.

本帖被以下淘专辑推荐:

3149

主题

8386

回帖

6万

积分

$\style{scale:11;fill:#eff}꩜$

积分
65391
QQ

显示全部楼层

 楼主| hbghlyj 发表于 2022-6-7 06:36
问:
main-modified.png
定理5证明了$c>a_1a_2$时一定有正解,$c=a_1a_2$时无正解,那么$c<a_1a_2$时是否可能有正解呢?

答:
是可能的.比如$2x+3y=6$没有正解,但$2 x + 3 y=5$有正解$(1,1)$.
$z=6$是使$2x+3y=z$无正解的$z$的最大值.

Coin problem (n=2)
The coin problem (also referred to as the Frobenius coin problem or Frobenius problem, after the mathematician Ferdinand Frobenius) is a mathematical problem that asks for the largest monetary amount that cannot be obtained using only coins of specified denominations, for example, the largest amount that cannot be obtained using only coins of 3 and 5 units is 7 units. The solution to this problem for a given set of coin denominations is called the Frobenius number of the set. The Frobenius number exists as long as the set of coin denominations has no common divisor greater than 1.

There is an explicit formula for the Frobenius number when there are only two different coin denominations, $x$ and $y$: the Frobenius number is then $xy − x − y$.

3149

主题

8386

回帖

6万

积分

$\style{scale:11;fill:#eff}꩜$

积分
65391
QQ

显示全部楼层

 楼主| hbghlyj 发表于 2022-7-4 00:04

手机版|悠闲数学娱乐论坛(第3版)

GMT+8, 2025-3-4 13:23

Powered by Discuz!

× 快速回复 返回顶部 返回列表