Forgot password?
 Register account
View 578|Reply 9

[几何] 正方形BAGH,C∈GH,D∈GH,BD//AC,AE平分∠BAC,求证:BF=DE+CH

[Copy link]

17

Threads

82

Posts

1822

Credits

Credits
1822

Show all posts

uk702 Posted 2022-6-30 09:18 |Read mode
Last edited by uk702 2022-6-30 11:26(错题)如图,正方形BAGH中,D是GH中的一点,作BC//AD交GH的延长线于C,作∠ABC的角平分线交AD于E,交AH于F,求证:AF=DE+CH。

更正为(图为更正后的图):
如图,正方形BAGH中,C是GH中的一点,作BD//AC交GH的延长线于D,作∠BAC的角平分线交BD于E,交BH于F,求证:BF=DE+CH。
Snipaste_2022-06-30_11-20-51.png

24

Threads

1010

Posts

110K

Credits

Credits
12655

Show all posts

战巡 Posted 2022-6-30 11:05
p0174.png
这不等啊

17

Threads

82

Posts

1822

Credits

Credits
1822

Show all posts

 Author| uk702 Posted 2022-6-30 11:10
(Sorry, 似乎题目是错的,待查) 是的,我也发现了。

24

Threads

1010

Posts

110K

Credits

Credits
12655

Show all posts

战巡 Posted 2022-6-30 12:21
uk702 发表于 2022-6-30 11:10
(Sorry, 似乎题目是错的,待查) 是的,我也发现了。
令$\angle BAC=x$,正方形边长为$a$,那么有
\[BF=AB\tan(\angle BAF)=a\tan(\frac{x}{2})\]

接下来,由于$BD\parallel AC$,有$\angle CAE=\angle BEA=\frac{x}{2}=\angle BAF$,$AB=BE=a$
另外
\[BD=AC=\frac{AG}{\cos(\angle GAC)}=\frac{a}{\sin(x)}\]
\[DE=BD-BE=\frac{a}{\sin(x)}-a\]

然后
\[CH=GH-CG=a-a\cot(x)\]
因此
\[DE+CH=a[\frac{1}{\sin(x)}-\cot(x)]=a\frac{1-\cos(x)}{\sin(x)}\]
\[=a\frac{1-(1-2\sin^2(\frac{x}{2}))}{2\sin(\frac{x}{2})\cos(\frac{x}{2})}=a\tan(\frac{x}{2})=BF\]

17

Threads

82

Posts

1822

Credits

Credits
1822

Show all posts

 Author| uk702 Posted 2022-6-30 13:25
如图,作 FK⊥AC于K,∵EA平分∠BAC,
∴易知B、K关于AE成对称,
∴FB=FK,EB=EK,AB=AK
∵EB//AK,∴∠BEA=∠EAC=∠EAB
∴EB=AB,四边形BAKE是菱形
∴EK//BA//DC,∴ED=KC
延长BK交HG于L,
∵AB=AK,∴∠ABK=∠AKB
而∠ABK=∠KLC,∠AKB=∠CKL
∴∠KLC=∠CKL,∴CK=CL
又△BLH≌△AFB
∴BF=LH=CL+CH=CK+CH=ED+CH
2022-06-30_132512.png

54

Threads

959

Posts

9977

Credits

Credits
9977

Show all posts

乌贼 Posted 2022-6-30 13:43
如图: 211.png
$ AMEH $四点共圆且。\[ BM=BE\riff DE=DN \]又\[ \angle NFH=\angle NEH=\angle MAH=45\du \riff HF=HN \]所以\[ BF+FH=AB=CH+HN+ND=CH+FH+DE\riff BF=DE+CH \]

17

Threads

82

Posts

1822

Credits

Credits
1822

Show all posts

 Author| uk702 Posted 2022-6-30 14:53
乌贼 发表于 2022-6-30 13:43
如图:
$ AMEH $四点共圆且。\[ BM=BE\riff DE=DN \]又\[ \angle NFH=\angle NEH=\angle MAH=45\du \riff H ...
高!佩服!我对着您的解答看了半天才看明白了,真不知您是怎么想出来的。

54

Threads

959

Posts

9977

Credits

Credits
9977

Show all posts

乌贼 Posted 2022-7-1 20:35
实质与5楼是一样的,再简化点。如图: 212.png
     作正方形$ BHPM $,$ ME $延长线交$ HP $于$ N $。有\[ DP=GH \]\[ BA=BE=BM\riff\angle AEM=90\du \riff\triangle ABF\cong \triangle MPN\riff BF=PN \]
又\[ \triangle BEM\sim \triangle DEN\riff DE=DN \]
综上\[ BF=PN=PD+DN=CH+DE \]

Comment

很是简洁!谢谢。  Posted 2022-7-1 22:38

17

Threads

82

Posts

1822

Credits

Credits
1822

Show all posts

 Author| uk702 Posted 2022-7-1 22:35
引:正方形ABCD中,E 是 CD 上的一点,∠ABE的角平分线交AD于F,则有 BE=AF+CE。
证:如图,将△BCE旋转90°至△BAG,
则BG=BE,BG⊥BE
∴∠GBF=∠GBA+∠ABF=∠EBC+∠ABF=∠EBC+∠FBE=∠FBC=∠AFB
∴GB=GF=GA+AF=CE+AF,又GB=BE
∴BE=CE+AF
(其它证法见:027art.com/zhongkao/gzh13/8815883.html

下面证明本题:
假设AE的延长线和GH和延长线相交于K,
则易知DK=DE,CK=CA。

而 DE+CH=DK+CH=CK-DH=AC-CG
由引理,知 AC-CG=BF,
∴DE+CH=BF。


Snipaste_2022-07-01_22-33-05.png
Snipaste_2022-07-01_22-36-42.png

Mobile version|Discuz Math Forum

2025-6-4 21:39 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit